收藏 分销(赏)

人教七年级下册数学期末质量检测卷(附解析).doc

上传人:w****g 文档编号:1878875 上传时间:2024-05-10 格式:DOC 页数:26 大小:635.04KB
下载 相关 举报
人教七年级下册数学期末质量检测卷(附解析).doc_第1页
第1页 / 共26页
人教七年级下册数学期末质量检测卷(附解析).doc_第2页
第2页 / 共26页
人教七年级下册数学期末质量检测卷(附解析).doc_第3页
第3页 / 共26页
人教七年级下册数学期末质量检测卷(附解析).doc_第4页
第4页 / 共26页
人教七年级下册数学期末质量检测卷(附解析).doc_第5页
第5页 / 共26页
点击查看更多>>
资源描述

1、人教七年级下册数学期末质量检测卷(附解析)一、选择题1如图,下列各组角中是同位角的是()A1和2B3和4C2和4D1和42下列运动中,属于平移的是( )A冷水加热过程中,小气泡上升成为大气泡B急刹车时汽车在地面上的滑动C随手抛出的彩球运动D随风飘动的风筝在空中的运动3在平面直角坐标系中,平行于坐标轴的线段,若点坐标是,则点不在( )A第一象限B第二象限C第三象限D第四象限4下列说法中不正确的个数为()在同一平面内,两条直线的位置关系只有两种:相交和垂直有且只有一条直线垂直于已知直线如果两条直线都与第三条直线平行,那么这两条直线也互相平行从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离过

2、一点,有且只有一条直线与已知直线平行A2个B3个C4个D5个5如图,的平分线的反向延长线和的平分线的反向延长线相交于点,则( )ABCD6下列命题正确的是()A若ab,bc,则acB若ab,bc,则acC49的平方根是7D负数没有立方根7如图,ABCD,直线EF分别交AB、CD于点E、F,FH平分EFD,若1110,则2的度数为()A45B40C55D358如图,在平面直角坐标系内原点O(0,0)第一次跳动到点A1(0,1),第二次从点A1跳动到点A2(1,2),第三次从点A2跳动到点A3(-1,3),第四次从点A3跳动到点A4(-1,4),按此规律下去,则点A2021的坐标是( )A(673

3、,2021)B(674,2021)C(-673,2021)D(-674,2021)九、填空题9计算:的结果为_十、填空题10点P(2,3)关于x轴的对称点的坐标是_十一、填空题11如图,在平面直角坐标系中,点,三点的坐标分别是,过点作,交第一象限的角平分线于点,连接交轴于点则点的坐标为_十二、填空题12如图,平分,交于,若,则的度数是_十三、填空题13把一张对边互相平行的纸条折成如图所示,是折痕,若,则_十四、填空题14观察下面“品”字图形中各数字之间的规律,根据观察到的规律得出a+b的值为_十五、填空题15已知点的坐标(3-a,3a-1),且点到两坐标轴的距离相等,则点的坐标是_十六、填空题

4、16如图,在平面直角坐标系中,点,点,点,点按照这样的规律下去,点的坐标为_十七、解答题17(1)(2)十八、解答题18已知m+n=2,mn=-15,求下列各式的值(1);(2)十九、解答题19学习如何书写规范的证明过程,补充完整,并完成后面问题已知:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DEBA,AFDE求证:FDAC证明:DEBA(已知) BFD ( )又 AFDE (等量代换)FDCA( )模仿上面的证明过程,用另一种方法证明FDAC二十、解答题20在平面直角坐标系中有三个点、B(5,1)、,是的边上任意一点,经平移后得到,点的对应点为,(1)点到轴的距离是 个

5、单位长度;(2)画出和;(3)求的面积二十一、解答题21例如即,的整数部分为2,小数部分为,仿照上例回答下列问题;(1)介于连续的两个整数a和b之间,且ab,那么a ,b ;(2)x是的小数部分,y是的整数部分,求x ,y ;(3)求的平方根二十二、解答题22喜欢探究的亮亮同学拿出形状分别是长方形和正方形的两块纸片,其中长方形纸片的长为,宽为,且两块纸片面积相等(1)亮亮想知道正方形纸片的边长,请你帮他求出正方形纸片的边长;(结果保留根号)(2)在长方形纸片上截出两个完整的正方形纸片,面积分别为和,亮亮认为两个正方形纸片的面积之和小于长方形纸片的总面积,所以一定能截出符合要求的正方形纸片来,你

6、同意亮亮的见解吗?为什么?(参考数据:,)二十三、解答题23已知,ABCD点M在AB上,点N在CD上(1)如图1中,BME、E、END的数量关系为: ;(不需要证明)如图2中,BMF、F、FND的数量关系为: ;(不需要证明)(2)如图3中,NE平分FND,MB平分FME,且2EF180,求FME的度数;(3)如图4中,BME60,EF平分MEN,NP平分END,且EQNP,则FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出FEQ的度数二十四、解答题24将两块三角板按如图置,其中三角板边,(1)下列结论:正确的是_如果,则有;如果,则平分(2)如果,判断与是否相等,请说明理由(3)

7、将三角板绕点顺时针转动,直到边与重合即停止,转动的过程中当两块三角板恰有两边平行时,请直接写出所有可能的度数二十五、解答题25(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等如图 1,MN 是平面镜,若入射光线 AO 与水平镜面夹角为1,反射光线 OB 与水平镜面夹角为2,则1=2 .(现象解释)如图 2,有两块平面镜 OM,ON,且 OMON,入射光线 AB 经过两次反射,得到反射光线 CD.求证 ABCD.(尝试探究)如图 3,有两块平面镜 OM,ON,且MON =55 ,入射光线 AB 经过两次反射,得到反射光线 CD,光线 AB 与 CD 相交于

8、点 E,求BEC 的大小.(深入思考)如图 4,有两块平面镜 OM,ON,且MON = ,入射光线 AB 经过两次反射,得到反射光线 CD,光线 AB 与 CD 所在的直线相交于点 E,BED= , 与 之间满足的等量关系是 .(直接写出结果)【参考答案】一、选择题1D解析:D【分析】根据同位角的定义分析即可,两条直线被第三条直线所截,如果两个角分别在两条直线的同侧,且在第三条直线的同旁,那么这两个角叫做同位角【详解】A. 1和2是邻补角,不符合题意;B. 3和4是同旁内角,不符合题意;C. 2和4没有关系,不符合题意;D. 1和4是同位角,符合题意;故选D【点睛】本题考查了同位角的定义,理解

9、同位角的定义是解题的关键2B【详解】解:A、气泡在上升的过程中变大,不属于平移;B、急刹车时汽车在地面上的滑动属于平移;C、随手抛出的彩球运动既发生了平移,也发生了旋转,不属于平移;D、随风飘动的树叶在空中的运动,解析:B【详解】解:A、气泡在上升的过程中变大,不属于平移;B、急刹车时汽车在地面上的滑动属于平移;C、随手抛出的彩球运动既发生了平移,也发生了旋转,不属于平移;D、随风飘动的树叶在空中的运动,既发生了平移,也发生了旋转故选B【点睛】此题主要考查了平移,关键是掌握平移时图形中所有点移动的方向一致,并且移动的距离相等3D【分析】设点 ,分轴和轴,两种情况讨论,即可求解【详解】解:设点

10、,若轴,则点P、Q的纵坐标相等,线段,若点坐标是, , ,解得: 或 , 或 ;若轴,则点P、Q的横坐标相等,线段,若点坐标是, , ,解得: 或 , 或 ,点 或或 或 ,点不在第四象限故选:D【点睛】本题主要考查了坐标与图形,线段与坐标轴平行时点的坐标特征,分轴和轴,两种情况讨论是解题的关键4C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可【详解】在同一平面内,两条直线的位置关系只有两种:相交和平行,故不正确;过直线外一点有且只有一条直线垂直于已知直线故不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行故正

11、确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离故不正确;过直线外一点,有且只有一条直线与已知直线平行故不正确;不正确的有四个故选:C【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解5A【分析】分别过、作的平行线和,根据平行线的性质和角平分线的性质可用和分别表示出和,从而可找到和的关系,结合条件可求得【详解】解:如图,分别过、作的平行线和,又,故选:A【点睛】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即两直线平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,6B【解析】【分析】根据不等式

12、的性质、平行线的判定、平方根和立方根依次判定各项后即可解答【详解】选项A,由ab,bc,则ac,可得选项A错误;选项B, 若ab,bc,则ac,正确;选项C,由49的平方根是7,可得选项C错误;选项D,由负数有立方根,可得选项D错误;故选B【点睛】本题考查了命题的知识,关键是根据不等式的性质、平行线的判定、平方根和立方根解答7D【分析】根据对顶角相等求出3,再根据两直线平行,同旁内角互补求出DFE,然后根据角平分线的定义求出DFH,再根据两直线平行,内错角相等解答【详解】解:1=110,3=1=110,ABCD,DFE=180-3=180-110=70,HF平分EFD,DFH=DFE=70=3

13、5,ABCD,2=DFH=35故选:D【点睛】本题考查了平行线的性质,角平分线的定义,对顶角相等的性质,是基础题,熟记各性质并准确识图是解题的关键8B【分析】根据已知点的坐标寻找规律并应用解答即可【详解】解:A1(0,1),A2(1,2),A3(-1,3),A4(-1,4),A5(2,5),A6(-2,6),A7(-2,7),A解析:B【分析】根据已知点的坐标寻找规律并应用解答即可【详解】解:A1(0,1),A2(1,2),A3(-1,3),A4(-1,4),A5(2,5),A6(-2,6),A7(-2,7),A8(3,8),A3n-1(n,3n-1),A3n(-n,3n),A3n+1(-n,

14、3n+1)(n为正整数),3674-1=2021,n=674,所以A 2021(674,2021)故选B【点睛】本题主要考查了点的坐标规律,根据已知点坐标找到A3n-1(n,3n-1),A3n(-n,3n),A3n+1(-n,3n+1)(n为正整数)的规律是解答本题的关键九、填空题96【分析】根据算术平方根的定义即可求解【详解】解:的结果为6故答案为6【点睛】考查了算术平方根,非负数a的算术平方根a有双重非负性:被开方数a是非负数;算术平方根a本身是非负数解析:6【分析】根据算术平方根的定义即可求解【详解】解:的结果为6故答案为6【点睛】考查了算术平方根,非负数a的算术平方根a有双重非负性:被

15、开方数a是非负数;算术平方根a本身是非负数十、填空题10(2,3)【分析】两点关于x轴对称,那么横坐标不变,纵坐标互为相反数【详解】点P(2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,对称点的坐标是(2,3)故答案为解析:(2,3)【分析】两点关于x轴对称,那么横坐标不变,纵坐标互为相反数【详解】点P(2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,对称点的坐标是(2,3)故答案为(2,3)【点睛】本题考查关于x轴对称的点的坐标的特点,可记住要点或画图得到十一、填空题11【分析】设D(x,y),由点在第一象限的角平分线上,可得,由待定系数法得直线AB的解析式为,由,可设,把代

16、入, 得,进而可求得,再由待定系数法求得直线AD的解析式为,令x=0时,得,即可求得点E解析:【分析】设D(x,y),由点在第一象限的角平分线上,可得,由待定系数法得直线AB的解析式为,由,可设,把代入, 得,进而可求得,再由待定系数法求得直线AD的解析式为,令x=0时,得,即可求得点E的坐标.【详解】解:设D(x,y),点在第一象限的角平分线上,设直线AB的解析式为:,把,代入得: k=2,把代入,得b=-1,点D在上,设直线AD的解析式为:,可得, ,当x=0时,故答案为:【点睛】此题考查了一次函数的性质,掌握待定系数法求一次函数的解析式是解答此题的关键.十二、填空题1225【分析】根据平

17、行线的性质和角平分线的定义求解即可得到答案.【详解】解:ABCD,1=ECD,CE平分ACD,ACD=50,=25,1=25,故答案为解析:25【分析】根据平行线的性质和角平分线的定义求解即可得到答案.【详解】解:ABCD,1=ECD,CE平分ACD,ACD=50,=25,1=25,故答案为:25.【点睛】本题主要考查了角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.十三、填空题13【分析】需理清楚折叠后,得到的新的角与原来的角相等,再结合平行线的性质:两直线平行,内错角相等即可求解【详解】,是折痕,折叠后,故答案为:【点睛】本题考查了平行解析:【分析】需理清楚折叠后

18、,得到的新的角与原来的角相等,再结合平行线的性质:两直线平行,内错角相等即可求解【详解】,是折痕,折叠后,故答案为:【点睛】本题考查了平行线的性质,折叠问题,体现了数学的转化思想,模型思想十四、填空题14【分析】由图可知,最上面的小正方形的数字是连续奇数,左下角的数字是2n,右下角的数字是2n1+2n,即可得出答案.【详解】由图可知,每个图形的最上面的小正方形中的数字是连续奇数,所以第n解析:【分析】由图可知,最上面的小正方形的数字是连续奇数,左下角的数字是2n,右下角的数字是2n1+2n,即可得出答案.【详解】由图可知,每个图形的最上面的小正方形中的数字是连续奇数,所以第n个图形中最上面的小

19、正方形中的数字是2n1,即2n1=11,n=62=21,4=22,8=23,左下角的小正方形中的数字是2n,b=26=64右下角中小正方形中的数字是2n1+2n,a=11+b=11+64=75,a+b=75+64=139故答案为:139【点睛】本题主要考查了数字变化规律,观察出题目正方形的数字的规律是解题的关键.十五、填空题15(2,2)或(4,-4)【分析】点P到x轴的距离表示为,点P到y轴的距离表示为,根据题意得到=,然后去绝对值求出x的值,再写出点P 的坐标【详解】解:点P到两坐标轴的距离相等=解析:(2,2)或(4,-4)【分析】点P到x轴的距离表示为,点P到y轴的距离表示为,根据题意

20、得到=,然后去绝对值求出x的值,再写出点P 的坐标【详解】解:点P到两坐标轴的距离相等=3a-1=3-a或3a-1=-(3-a)解得a=1或a=-1当a=1时,3-a=2,3a-1=2;当a=-1时,3-a=4,3a-1=-4点P的坐标为(2,2)或(4,-4)故答案为(2,2)或(4,-4)【点睛】本题考查了坐标与图形性质:利用点的坐标特征求出线段的长和判断线段与坐标轴的位置关系点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面;到x轴的距离与纵坐标有关;距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号十六、填空题16【分析】观察点,点,点,点点的横坐标为,纵坐标

21、为,据此即可求得的坐标;【详解】,故答案为:【点睛】本题考查了坐标系中点的规律,找到规律是解题的关键解析:【分析】观察点,点,点,点点的横坐标为,纵坐标为,据此即可求得的坐标;【详解】,故答案为:【点睛】本题考查了坐标系中点的规律,找到规律是解题的关键十七、解答题17(1);(2)【分析】(1)先求算术平方根,再计算乘法,后加减即可得到答案;(2)先求立方根,算术平方根,再计算加减即可得到答案【详解】解:(1) (2) 【点睛】解析:(1);(2)【分析】(1)先求算术平方根,再计算乘法,后加减即可得到答案;(2)先求立方根,算术平方根,再计算加减即可得到答案【详解】解:(1) (2) 【点睛

22、】本题考查的是实数的加减运算,考查了求一个数的算术平方根,立方根,掌握以上知识是解题的关键十八、解答题18(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案【详解】解:(1)=-11;(2)=解析:(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案【详解】解:(1)=-11;(2)=68【点睛】此题主要考查了完全平方公式,正确应用完全平方公式是解题关键十九、解答题19(1)FDE,两直线平行,内错角相等; A,BFD, 同位角相等,两直

23、线平行;(2)证明见解析【分析】(1)根据两直线平行内错角相等和同位角相等两直线平行求解即可;(2)根据两直线平行解析:(1)FDE,两直线平行,内错角相等; A,BFD, 同位角相等,两直线平行;(2)证明见解析【分析】(1)根据两直线平行内错角相等和同位角相等两直线平行求解即可;(2)根据两直线平行同位角相等和内错角相等两直线平行求解即可【详解】(1)证明:DEBA(已知) BFDFDE(两直线平行,内错角相等)又 AFDEABFD,(等量代换)FDCA(同位角相等,两直线平行)故答案为:FDE,两直线平行,内错角相等; A,BFD, 同位角相等,两直线平行 (2)证明:DEBA(已知),

24、ADEC(两直线平行,同位角相等),又 AFDE(已知),FDEDEC(等量代换),FDCA;(内错角相等,两直线平行)【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解二十、解答题20(1)2;(2)见解析;(3)2.5【分析】(1)根据A点的纵坐标即可求解;(2)根据网格结构找出点A、B、C的位置,然后顺次连接即可,再根据点P、P1的坐标确定出变化规律,然后找出点A1、B解析:(1)2;(2)见解析;(3)2.5【分析】(1)根据A点的纵坐标即可求解;(2)根据网格结构找出点A、B、C的位置,然后顺次连接即可,再根据点P、P1的坐标确定出变化规律,然后找出

25、点A1、B1、C1的位置,然后顺次连接即可;(3)利用三角形所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解【详解】(1)点到轴的距离是2个单位长度故答案为:2;(2)如图,和为所求作(3)S6111.52.5【点睛】本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键二十一、解答题21(1),;(2);(3)【分析】(1)根据的范围确定出、的值;(2)求出,的范围,即可求出、的值,代入求出即可;(3)将代入中即可求出【详解】解:(1),故答案是:,;(解析:(1),;(2);(3)【分析】(1)根据的范围确定出、的值;(2)求出,的范围,即

26、可求出、的值,代入求出即可;(3)将代入中即可求出【详解】解:(1),故答案是:,;(2),的小数部分为:,的整数部分为:3;故答案是:;(3),的平方根为:【点睛】本题考查了估算无理数的大小的应用、求平方根,解题的关键是读懂题意及求出二十二、解答题22(1);(2)不同意,理由见解析【分析】(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值;(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个解析:(1);(2)不同意,理由见解析【分析】(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值;(2)根据两个正方

27、形纸片的面积计算出两个正方形的边长,计算两个正方形边长的和,并与3比较即可解答【详解】解:(1)设正方形边长为,则,由算术平方根的意义可知,所以正方形的边长是(2)不同意因为:两个小正方形的面积分别为和,则它们的边长分别为和,即两个正方形边长的和约为,所以,即两个正方形边长的和大于长方形的长,所以不能在长方形纸片上截出两个完整的面积分别为和的正方形纸片【点睛】本题考查了算术平方根的应用,解题的关键是读懂题意并熟知算术平方根的概念二十三、解答题23(1)BMEMENEND;BMFMFNFND;(2)120;(3)不变,30【分析】(1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过

28、F作FHAB解析:(1)BMEMENEND;BMFMFNFND;(2)120;(3)不变,30【分析】(1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB,易得FHABCD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(BME+END)+BMF-FND=180,可求解BMF=60,进而可求解;(3)根据平行线的性质及角平分线的定义可推知FEQ=BME,进而可求解【详解】解:(1)过E作EHAB,如图1,BMEMEH,ABCD,HECD,ENDHEN,MENMEHHENBMEEND,即BMEMENEND如图2,过F作FHAB,BMFMFK,ABC

29、D,FHCD,FNDKFN,MFNMFKKFNBMFFND,即:BMFMFNFND故答案为BMEMENEND;BMFMFNFND(2)由(1)得BMEMENEND;BMFMFNFNDNE平分FND,MB平分FME,FMEBMEBMF,FNDFNEEND,2MENMFN180,2(BMEEND)BMFFND180,2BME2ENDBMFFND180,即2BMFFNDBMFFND180,解得BMF60,FME2BMF120;(3)FEQ的大小没发生变化,FEQ30由(1)知:MENBMEEND,EF平分MEN,NP平分END,FENMEN(BMEEND),ENPEND,EQNP,NEQENP,FE

30、QFENNEQ(BMEEND)ENDBME,BME60,FEQ6030【点睛】本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键二十四、解答题24(1);(2)相等,理由见解析;(3)30或45或75或120或135【分析】(1)根据平行线的判定和性质分别判定即可;(2)利用角的和差,结合CAB=DAE=90进行判断解析:(1);(2)相等,理由见解析;(3)30或45或75或120或135【分析】(1)根据平行线的判定和性质分别判定即可;(2)利用角的和差,结合CAB=DAE=90进行判断;(3)依据这两块三角尺各有一条边互相平行,分五种情况讨论,即可得到EAB角度所有可

31、能的值【详解】解:(1)BFD=60,B=45,BAD+D=BFD+B=105,BAD=105-30=75,BADB,BC和AD不平行,故错误;BAC+DAE=180,BAE+CAD=BAE+CAE+DAE=180,故正确;若BCAD,则BAD=B=45,BAE=45,即AB平分EAD,故正确;故答案为:;(2)相等,理由是:CAD=150,BAE=180-150=30,BAD=60,BAD+D=BFD+B,BFD=60+30-45=45=C;(3)若ACDE,则CAE=E=60,EAB=90-60=30;若BCAD,则B=BAD=45,EAB=45;若BCDE,则E=AFB=60,EAB=1

32、80-60-45=75;若ABDE,则D=DAB=30,EAB=30+90=120;若AEBC,则C=CAE=45,EAB=45+90=135;综上:EAB的度数可能为30或45或75或120或135【点睛】本题考查了平行线的判定和性质,角平分线的定义,解题的关键是理解题意,分情况画出图形,学会用分类讨论的思想思考问题二十五、解答题25【现象解释】见解析;【尝试探究】BEC = 70;【深入思考】 b = 2a.【分析】现象解释根据平面镜反射光线的规律得1=2,3=4,再利用2+3=90得出1+2+解析:【现象解释】见解析;【尝试探究】BEC = 70;【深入思考】 b = 2a.【分析】现象

33、解释根据平面镜反射光线的规律得1=2,3=4,再利用2+3=90得出1+2+3+4=180,即可得出DCB+ABC=180,即可证得ABCD;尝试探究根据三角形内角和定理求得2+3=125,根据平面镜反射光线的规律得1=2,3=4,再利用平角的定义得出1+2+EBC+3+4+BCE=360,即可得出EBC+BCE=360-250=110,根据三角形内角和定理即可得出BEC=180-110=70;深入思考利用平角的定义得出ABC=180-22,BCD=180-23,利用外角的性质BED=ABC-BCD=(180-22)-(180-23)=2(3-2)=,而BOC=3-2=,即可证得=2【详解】现

34、象解释如图2,OMON,CON=90,2+3=901=2,3=4,1+2+3+4=180,DCB+ABC=180,ABCD;【尝试探究】如图3,在OBC中,COB=55,2+3=125,1=2,3=4,1+2+3+4=250,1+2+EBC+3+4+BCE=360,EBC+BCE=360-250=110,BEC=180-110=70;【深入思考】如图4,=2,理由如下:1=2,3=4,ABC=180-22,BCD=180-23,BED=ABC-BCD=(180-22)-(180-23)=2(3-2)=,BOC=3-2=,=2【点睛】本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服