资源描述
人教版七年级下册数学期末质量检测卷(附答案)
一、选择题
1.下列图形中,与是同旁内角的是( )
A. B. C. D.
2.下列运动中,属于平移的是( )
A.冷水加热过程中,小气泡上升成为大气泡 B.急刹车时汽车在地面上的滑动
C.随手抛出的彩球运动 D.随风飘动的风筝在空中的运动
3.已知点P的坐标为,则点P在第( )象限.
A.一 B.二 C.三 D.四
4.下列语句中,是假命题的是( )
A.有理数和无理数统称实数
B.在同一平面内,过一点有且只有一条直线与已知直线垂直
C.在同一平面内,垂直于同一条直线的两条直线互相平行
D.两个锐角的和是锐角
5.如图,点在延长线上,、交于,且,,比的余角小,为线段上一动点,为上一点,且满足,为的平分线.则下列结论:①;②平分;③;④的角度为定值.其中正确结论的个数有( )
A.1个 B.2个 C.3个 D.4个
6.如果≈1.333,≈2.872,那么约等于( )
A.28.72 B.0.2872 C.13.3 D.0.1333
7.如图,直线AB∥CD,BE平分∠ABD,若∠DBE=20°,∠DEB=80°,求∠CDE的度数是( )
A.50° B.60° C.70° D.80°
8.如图,已知在平面直角坐标系中,点A坐标是(1,1).若记点A坐标为(a1,a2),则一个点从点A出发沿图中路线依次经过B(a3,a4),C(a5,a6),D(a7,a8),…,每个点的横纵坐标都是整数,按此规律一直运动下去,则a2016+a2017+a2018的值为( )
A.1009 B.1010 C.1513 D.2521
九、填空题
9.=________.
十、填空题
10.点关于y轴对称的点的坐标是______.
十一、填空题
11.已知,射线在同一平面内绕点O旋转,射线分别是和的角平分线.则的度数为______________.
十二、填空题
12.如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有 _______个.
十三、填空题
13.如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C’处,折痕为EF,若∠ABE=30°,则∠EFC’的度数为____________.
十四、填空题
14.按下面的程序计算:
若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可以是________.
十五、填空题
15.已知AB∥x轴,A(-2,4),AB=5,则B点横纵坐标之和为______.
十六、填空题
16.如图,一个点在第一象限及轴、轴上运动,且每秒移动一个单位,在第1秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动[即(0,0)→(0,1)→(1,1)→(1,0)→…],那么第42秒时质点所在位置的坐标是______.
十七、解答题
17.计算:(1);(2)
十八、解答题
18.求下列各式中的的值.
(1);
(2).
十九、解答题
19.如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),且∠l=∠CGD( )
∴∠2=∠CGD
∴.CE∥BF( )
∴∠ =∠BFD( )
又∵∠B=∠C(已知)
∴ ,
∴AB∥CD( )
二十、解答题
20.如图,在平面直角坐标系中,的三个顶点的坐标分别是,,.
(1)求出的面积;
(2)平移,若点的对应点的坐标为,画出平移后对应的,写出坐标.
二十一、解答题
21.阅读材料,解答问题:
材料:∵即,∴的整数部分为2,小数部分为.
问题:已知的立方根是3,的算术平方根是4,c是的整数部分.
(1)求的小数部分.
(2)求的平方根.
二十二、解答题
22.(1)如图,分别把两个边长为的小正方形沿一条对角线裁成个小三角形拼成一个大正方形,则大正方形的边长为_______;
(2)若一个圆的面积与一个正方形的面积都是,设圆的周长为,正方形的周长为,则_____(填“”或“”或“”号);
(3)如图,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为,他能裁出吗?请说明理由?
二十三、解答题
23.如图1,已知直线m∥n,AB 是一个平面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线n上的点Q.我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OPA=∠QPB.
(1)如图1,若∠OPQ=82°,求∠OPA的度数;
(2)如图2,若∠AOP=43°,∠BQP=49°,求∠OPA的度数;
(3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为 O→P→Q→R→O→P→…试判断∠OPQ和∠ORQ的数量关系,并说明理由.
二十四、解答题
24.已知AB∥CD,点M在直线AB上,点N、Q在直线CD上,点P在直线AB、CD之间,∠AMP=∠PQN=α,PQ平分∠MPN.
(1)如图①,求∠MPQ的度数(用含α的式子表示);
(2)如图②,过点Q作QE∥PN交PM的延长线于点E,过E作EF平分∠PEQ交PQ于点F.请你判断EF与PQ的位置关系,并说明理由;
(3)如图③,在(2)的条件下,连接EN,若NE平分∠PNQ,请你判断∠NEF与∠AMP的数量关系,并说明理由.
二十五、解答题
25.如图所示,已知射线.点E、F在射线CB上,且满足,OE平分
(1)求的度数;
(2)若平行移动AB,那么的值是否随之发生变化?如果变化,找出变化规律.若不变,求出这个比值;
(3)在平行移动AB的过程中,是否存在某种情况,使?若存在,求出其度数.若不存在,请说明理由.
【参考答案】
一、选择题
1.A
解析:A
【分析】
根据同旁内角的定义去判断
【详解】
∵A选项中的两个角,符合同旁内角的定义,
∴选项A正确;
∵B选项中的两个角,不符合同旁内角的定义,
∴选项B错误;
∵C选项中的两个角,不符合同旁内角的定义,
∴选项C错误;
∵D选项中的两个角,不符合同旁内角的定义,
∴选项D错误;
故选A.
【点睛】
本题考查了同旁内角的定义,结合图形准确判断是解题的关键.
2.B
【详解】
解:A、气泡在上升的过程中变大,不属于平移;
B、急刹车时汽车在地面上的滑动属于平移;
C、随手抛出的彩球运动既发生了平移,也发生了旋转,不属于平移;
D、随风飘动的树叶在空中的运动,
解析:B
【详解】
解:A、气泡在上升的过程中变大,不属于平移;
B、急刹车时汽车在地面上的滑动属于平移;
C、随手抛出的彩球运动既发生了平移,也发生了旋转,不属于平移;
D、随风飘动的树叶在空中的运动,既发生了平移,也发生了旋转.
故选B.
【点睛】
此题主要考查了平移,关键是掌握平移时图形中所有点移动的方向一致,并且移动的距离相等.
3.B
【分析】
直接利用第二象限内的点:横坐标小于0,纵坐标大于0,即可得出答案.
【详解】
解:∵点P的坐标为P(-2,4),
∴点P在第二象限.
故选:B.
【点睛】
此题主要考查了点的坐标,正确掌握各象限内点的坐标特点是解题关键.
4.D
【分析】
根据实数的分类,垂直的性质,平行线的判定,锐角的定义逐项分析即可
【详解】
A. 有理数和无理数统称实数,正确,是真命题,不符合题意;
B. 在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题,不符合题意;
C. 在同一平面内,垂直于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;
D. 两个锐角的和不一定是锐角,例如,故D选项是假命题,符合题意
故选D
【点睛】
本题考查了真假命题的判定,实数的分类,垂直的性质,平行线的判定,锐角的定义,掌握相关性质定理是解题的关键.
5.D
【分析】
①由可得AE∥BD,进而得到,结合即可得到结论;②由得出,结合即可得解;③由平行线的性质和内角和定理判断即可;④根据角平分线的性质求解即可;
【详解】
∵,
∴AE∥BD,
∴,
∵,
∴,
∴,结论①正确;
∵,
∴,
∵,
∴,
∴平分,结论②正确;
∵,
∴,
∵比的余角小,
∴,
∵,,
∴,结论③正确;
∵为的平分线,
∴,
∵,
∴,
∴,结论④正确;
故正确的结论是①②③④;
故答案选D.
【点睛】
本题主要考查了平行线的判定与性质、余角和补角的性质,准确分析计算是解题的关键.
6.C
【分析】
根据立方根的变化特点和给出的数据进行解答即可.
【详解】
解:∵≈1.333,
∴,
故选:C.
【点睛】
本题考查了立方根,如果一个数扩大1000倍,它的立方根就扩大10倍,如果一个数缩小1000倍,它的立方根缩小10倍.
7.B
【分析】
延长,交于点,根据角平分线的定义以及已知条件可得,由三角形的外角性质可求,最后由平行线的性质即可求解.
【详解】
延长,交于点,
BE平分∠ABD,,
,
,∠DEB=80°,
,
,
,
故选B.
【点睛】
本题考查了角平分线的定义,平行线的性质,三角形的外角性质,掌握以上知识是解题的关键.
8.B
【分析】
观察已知点的坐标可得,所有数列奇数个都是从1开始逐渐递增的,且都等于所在的个数加上1再除以2,则a2017=1009,偶数列等于所在的个数除以4,能够整除的,结果的相反数就是所求出的数
解析:B
【分析】
观察已知点的坐标可得,所有数列奇数个都是从1开始逐渐递增的,且都等于所在的个数加上1再除以2,则a2017=1009,偶数列等于所在的个数除以4,能够整除的,结果的相反数就是所求出的数,不能整除的,等于结果的整数部分加1,且符号为正,进而可得结果.
【详解】
解:由直角坐标系可知A(1,1),B(2,﹣1),C(3,2),D(4,﹣2),
……,
即a1=1,a2=1,a3=2,a4=﹣1,a5=3,a6=2,a7=4,a8=﹣2,
……,
所有数列奇数个都是从1开始逐渐递增的,且都等于所在的个数加上1再除以2,则a2017=1009,
偶数列等于所在的个数除以4,能够整除的,结果的相反数就是所求出的数,不能整除的,等于结果的整数部分加1,且符号为正,
∴a2016=﹣504,2018÷4=504……2,
∴a2018=505,
故 a2016+a2017+a2018=1010,
故选:B.
【点睛】
本题主要考查了规律型:点的坐标,探索数字与字母规律是解题关键.
九、填空题
9.6
【分析】
根据算术平方根、有理数的乘方运算即可得.
【详解】
故答案为:6.
【点睛】
本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键.
解析:6
【分析】
根据算术平方根、有理数的乘方运算即可得.
【详解】
故答案为:6.
【点睛】
本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键.
十、填空题
10.【分析】
根据点坐标关于y轴对称的变换规律即可得.
【详解】
点坐标关于y轴对称的变换规律:横坐标互为相反数,纵坐标不变,
则点关于y轴对称的点的坐标是,
故答案为:.
【点睛】
本题考查了点坐标
解析:
【分析】
根据点坐标关于y轴对称的变换规律即可得.
【详解】
点坐标关于y轴对称的变换规律:横坐标互为相反数,纵坐标不变,
则点关于y轴对称的点的坐标是,
故答案为:.
【点睛】
本题考查了点坐标规律探索,熟练掌握点坐标关于y轴对称的变换规律是解题关键.
十一、填空题
11.50°
【分析】
分射线OC在∠AOB的内部和射线OC在∠AOB的外部,分别画出图形,结合根据角平分线定义求解.
【详解】
解:若射线OC在∠AOB的内部,
∵OE,OF分别是∠AOC和∠COB的
解析:50°
【分析】
分射线OC在∠AOB的内部和射线OC在∠AOB的外部,分别画出图形,结合根据角平分线定义求解.
【详解】
解:若射线OC在∠AOB的内部,
∵OE,OF分别是∠AOC和∠COB的角平分线,
∴∠EOC=∠AOC,∠FOC=∠BOC,
∴∠EOF=∠EOC+∠FOC=∠AOC+∠BOC=50°;
若射线OC在∠AOB的外部,
①射线OE,OF只有1个在∠AOB外面,如图,
∠EOF=∠FOC-∠COE=∠BOC-∠AOC=(∠BOC-∠AOC)=∠AOB=50°;
②射线OE,OF都在∠AOB外面,如图,
∠EOF=∠EOC+∠COF=∠AOC+∠BOC=(∠AOC+∠BOC)=(360°-∠AOB)=130°;
综上:∠EOF的度数为50°或130°,
故答案为:50°或130°.
【点睛】
本题考查的是角的计算,角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.注意分类思想的运用.
十二、填空题
12.4
【分析】
根据射线DF⊥直线c,可得与∠1互余的角有∠2,∠3,根据a∥b,可得与∠1互余的角有∠4,∠5,可得图中与∠1互余的角有4个
【详解】
∵射线DF⊥直线c
∴∠1+∠2=90°,∠1
解析:4
【分析】
根据射线DF⊥直线c,可得与∠1互余的角有∠2,∠3,根据a∥b,可得与∠1互余的角有∠4,∠5,可得图中与∠1互余的角有4个
【详解】
∵射线DF⊥直线c
∴∠1+∠2=90°,∠1+∠3=90°
即与∠1互余的角有∠2,∠3
又∵a∥b
∴∠3=∠5,∠2=∠4
∴∠1互余的角有∠4,∠5
∴与∠1互余的角有4个
故答案为:4
【点睛】
本题考查了互余的定义,如果两个角的和等于(直角),就说这两个角互为余角,简称互余,即其中每一个角是另一个角的余角;本题还考查了平行线的性质定理,两直线平行,同位角相等.
十三、填空题
13.120
【分析】
由折叠的性质知:∠EBC′、∠BC′F都是直角,因此BE∥C′F,那么∠EFC′和∠BEF互补,欲求∠EFC′的度数,需先求出∠BEF的度数;根据折叠的性质知∠BEF=∠DEF,而
解析:120
【分析】
由折叠的性质知:∠EBC′、∠BC′F都是直角,因此BE∥C′F,那么∠EFC′和∠BEF互补,欲求∠EFC′的度数,需先求出∠BEF的度数;根据折叠的性质知∠BEF=∠DEF,而∠AEB的度数可在Rt△ABE中求得,由此可求出∠BEF的度数,即可得解.
【详解】
解:Rt△ABE中,∠ABE=30°,
∴∠AEB=60°;
由折叠的性质知:∠BEF=∠DEF;
而∠BED=180°-∠AEB=120°,
∴∠BEF=60°;
由折叠的性质知:∠EBC′=∠D=∠BC′F=∠C=90°,
∴BE∥C′F,
∴∠EFC′=180°-∠BEF=120°.
故答案为:120.
【点睛】
本题考查图形的翻折变换以及平行线的性质的运用,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.
十四、填空题
14.131或26或5.
【解析】
试题解析:由题意得,5n+1=656,
解得n=131,
5n+1=131,
解得n=26,
5n+1=26,
解得n=5.
解析:131或26或5.
【解析】
试题解析:由题意得,5n+1=656,
解得n=131,
5n+1=131,
解得n=26,
5n+1=26,
解得n=5.
十五、填空题
15.-3或7
【分析】
由AB∥x轴可知B点的纵坐标和A点的纵坐标相同,再根据线段AB的长度为5,B点在A点的坐标或右边,分别求出B点的坐标,即可得到答案.
【详解】
解:∵AB∥x轴,
∴B点的纵坐标
解析:-3或7
【分析】
由AB∥x轴可知B点的纵坐标和A点的纵坐标相同,再根据线段AB的长度为5,B点在A点的坐标或右边,分别求出B点的坐标,即可得到答案.
【详解】
解:∵AB∥x轴,
∴B点的纵坐标和A点的纵坐标相同,都是4,
又∵A(-2,4),AB=5,
∴当B点在A点左侧的时候,B(-7,4),
此时B点的横纵坐标之和是-7+4=-3,
当B点在A点右侧的时候,B(3,4),
此时B点的横纵坐标之和是3+4=7;
故答案为:-3或7.
【点睛】
本题考查了与坐标轴平行的线上点的坐标特征以及分情况讨论的思想,要注意根据B点位置的不确定得出两种情况分别求解.
十六、填空题
16.(6,6)
【分析】
根据质点移动的各点的坐标与时间的关系,找出规律即可解答.
【详解】
由题意可知质点移动的速度是1个单位长度╱秒,
到达(1,0)时用了3秒,到达(2,0)时用了4秒,
从(2,
解析:(6,6)
【分析】
根据质点移动的各点的坐标与时间的关系,找出规律即可解答.
【详解】
由题意可知质点移动的速度是1个单位长度╱秒,
到达(1,0)时用了3秒,到达(2,0)时用了4秒,
从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒,
从(0,3)到(3,0)有六个单位长度,则到(3,0)时用了9+6=15秒,
以此类推到(4,0)用了16秒,到(0,4)用了16+8=24秒,到(0,5)用了25秒,到(5,0)用了25+10=35秒,
故第42秒时质点到达的位置为(6,6),
故答案为:(6,6).
【点睛】
本题主要考查了点的坐标的变化规律,得出运动变化的规律进而得出第42秒时质点所在位置的坐标是解题关键.
十七、解答题
17.(1)0 ;(2)2
【解析】试题分析:(1)先对根式、负指数化简,再根据运算顺序依次计算即可;(2)先去绝对值符号和0次幂,再按运算顺序依次计算即可;
试题解析:
①原式=2+2-4=0
解析:(1)0 ;(2)
【解析】试题分析:(1)先对根式、负指数化简,再根据运算顺序依次计算即可;(2)先去绝对值符号和0次幂,再按运算顺序依次计算即可;
试题解析:
①原式=2+2-4=0
②原式==
十八、解答题
18.(1)或;(2).
【分析】
(1)两边开平方即可得出两个一元一次方程,求出方程的解即可;
(2)先整理变形为(x﹣2)3=8,开立方根得出x﹣2=2,求出即可.
【详解】
解:(1),
,
,
或
解析:(1)或;(2).
【分析】
(1)两边开平方即可得出两个一元一次方程,求出方程的解即可;
(2)先整理变形为(x﹣2)3=8,开立方根得出x﹣2=2,求出即可.
【详解】
解:(1),
,
,
或;
(2),
,
,
,
.
【点睛】
本题是根据平方根和立方根的定义解方程,将方程系数化为1变形为:x2=a(a≥0)或x3=b的形式,再根据定义开平方或开立方,注意开平方时,有两个解.
十九、解答题
19.见解析
【分析】
首先确定∠1=∠CGD是对顶角,利用等量代换,求得∠2=∠CGD,则可根据:同位角相等,两直线平行,证得:CE∥BF,又由两直线平行,同位角相等,证得角相等,易得:∠BFD=∠B,
解析:见解析
【分析】
首先确定∠1=∠CGD是对顶角,利用等量代换,求得∠2=∠CGD,则可根据:同位角相等,两直线平行,证得:CE∥BF,又由两直线平行,同位角相等,证得角相等,易得:∠BFD=∠B,则利用内错角相等,两直线平行,即可证得:AB∥CD.
【详解】
解:∵∠1=∠2(已知),
且∠1=∠CGD(对顶角相等),
∴∠2=∠CGD(等量代换),
∴CE∥BF(同位角相等,两直线平行),
∴∠C=∠BFD(两直线平行,同位角相等),
又∵∠B=∠C(已知),
∴∠BFD=∠B(等量代换),
∴AB∥CD(内错角相等,两直线平行).
【点睛】
本题主要考查了平行线的判定与性质.注意数形结合思想的应用是解答此题的关键.
二十、解答题
20.(1)3;(2)B2(3,0),画图见解析
【分析】
(1)先求出AC,BC的长,然后根据三角形面积公式求解即可;
(2)先根据A和A2的坐标,确定平移方式,然后求出B2,C2的坐标,然后描点,顺次
解析:(1)3;(2)B2(3,0),画图见解析
【分析】
(1)先求出AC,BC的长,然后根据三角形面积公式求解即可;
(2)先根据A和A2的坐标,确定平移方式,然后求出B2,C2的坐标,然后描点,顺次连接即可得到答案
【详解】
解:(1)∵在平面直角坐标系中,的三个顶点的坐标分别是,,,
∴AC=3,BC=2,
∴;
(2)∵A(-3,2),A2(0,-2),
∴A2是由A向右平移3个单位得到的,向下平移4个单位长度得到的,
∴B2,C2的坐标分别为(3,0),(3,-2),
如图所示,即为所求.
【点睛】
本题主要考查了坐标与图形,三角形面积,根据点的坐标确定平移方式,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握相关知识进行求解.
二十一、解答题
21.(1);(2).
【分析】
(1)直接利用估算无理数的大小的方法分别得出答案;
(2)根据平方根和立方根的定义以及(1)结论,代入解答即可.
【详解】
(1)∵即,
∴的整数部分为3,小数部分为,
解析:(1);(2).
【分析】
(1)直接利用估算无理数的大小的方法分别得出答案;
(2)根据平方根和立方根的定义以及(1)结论,代入解答即可.
【详解】
(1)∵即,
∴的整数部分为3,小数部分为,
∴的小数部分为;
(2)∵的立方根是3,的算术平方根是4,c是的整数部分,
∴,,,
∴,,,
∴,
的平方根是.
【点睛】
本题考查了立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.
二十二、解答题
22.(1);(2);(3)不能裁剪出,详见解析
【分析】
(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;
(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形
解析:(1);(2);(3)不能裁剪出,详见解析
【分析】
(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;
(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;
(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;
【详解】
解:(1)∵小正方形的边长为1cm,
∴小正方形的面积为1cm2,
∴两个小正方形的面积之和为2cm2,
即所拼成的大正方形的面积为2 cm2,
∴大正方形的边长为cm,
(2)∵,
∴,
∴,
设正方形的边长为a
∵,
∴,
∴,
∴
故答案为:<;
(3)解:不能裁剪出,理由如下:
∵长方形纸片的长和宽之比为,
∴设长方形纸片的长为,宽为,
则,
整理得:,
∴,
∵450>400,
∴,
∴,
∴长方形纸片的长大于正方形的边长,
∴不能裁出这样的长方形纸片.
【点睛】
本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.
二十三、解答题
23.(1)49°,(2)44°,(3)∠OPQ=∠ORQ
【分析】
(1)根据∠OPA=∠QPB.可求出∠OPA的度数;
(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解
解析:(1)49°,(2)44°,(3)∠OPQ=∠ORQ
【分析】
(1)根据∠OPA=∠QPB.可求出∠OPA的度数;
(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解决问题;
(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,从而∠OPQ=∠ORQ.
【详解】
解:(1)∵∠OPA=∠QPB,∠OPQ=82°,
∴∠OPA=(180°-∠OPQ)×=(180°-82°)×=49°,
(2)作PC∥m,
∵m∥n,
∴m∥PC∥n,
∴∠AOP=∠OPC=43°,
∠BQP=∠QPC=49°,
∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,
∴∠OPA=(180°-∠OPQ)×=(180°-92°)×44°,
(3)∠OPQ=∠ORQ.
理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,
∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角,
∴∠AOP=∠DOR,∠BQP=∠RQC,
∴∠OPQ=∠ORQ.
【点睛】
本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的.
二十四、解答题
24.(1)2α;(2)EF⊥PQ,见解析;(3)∠NEF=∠AMP,见解析
【分析】
1)如图①,过点P作PR∥AB,可得AB∥CD∥PR,进而可得结论;
(2)根据已知条件可得2∠EPQ+2∠PEF=
解析:(1)2α;(2)EF⊥PQ,见解析;(3)∠NEF=∠AMP,见解析
【分析】
1)如图①,过点P作PR∥AB,可得AB∥CD∥PR,进而可得结论;
(2)根据已知条件可得2∠EPQ+2∠PEF=180°,进而可得EF与PQ的位置关系;
(3)结合(2)和已知条件可得∠QNE=∠QEN,根据三角形内角和定理可得∠QNE=(180°﹣∠NQE)=(180°﹣3α),可得∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE,进而可得结论.
【详解】
解:(1)如图①,过点P作PR∥AB,
∵AB∥CD,
∴AB∥CD∥PR,
∴∠AMP=∠MPR=α,∠PQN=∠RPQ=α,
∴∠MPQ=∠MPR+∠RPQ=2α;
(2)如图②,EF⊥PQ,理由如下:
∵PQ平分∠MPN.
∴∠MPQ=∠NPQ=2α,
∵QE∥PN,
∴∠EQP=∠NPQ=2α,
∴∠EPQ=∠EQP=2α,
∵EF平分∠PEQ,
∴∠PEQ=2∠PEF=2∠QEF,
∵∠EPQ+∠EQP+∠PEQ=180°,
∴2∠EPQ+2∠PEF=180°,
∴∠EPQ+∠PEF=90°,
∴∠PFE=180°﹣90°=90°,
∴EF⊥PQ;
(3)如图③,∠NEF=∠AMP,理由如下:
由(2)可知:∠EQP=2α,∠EFQ=90°,
∴∠QEF=90°﹣2α,
∵∠PQN=α,
∴∠NQE=∠PQN+∠EQP=3α,
∵NE平分∠PNQ,
∴∠PNE=∠QNE,
∵QE∥PN,
∴∠QEN=∠PNE,
∴∠QNE=∠QEN,
∵∠NQE=3α,
∴∠QNE=(180°﹣∠NQE)=(180°﹣3α),
∴∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE
=180°﹣(90°﹣2α)﹣3α﹣(180°﹣3α)
=180°﹣90°+2α﹣3α﹣90°+α
=α
=∠AMP.
∴∠NEF=∠AMP.
【点睛】
本题考查了平行线的性质,角平分线的性质,熟悉相关性质是解题的关键.
二十五、解答题
25.(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°.
【分析】
(1)根据OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,从而得出答案;
(2
解析:(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°.
【分析】
(1)根据OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,从而得出答案;
(2)根据平行线的性质,即可得出∠OBC=∠BOA,∠OFC=∠FOA,再根据∠FOA=∠FOB+∠AOB=2∠AOB,即可得出∠OBC:∠OFC的值为1:2.
(3)设∠AOB=x,根据两直线平行,内错角相等表示出∠CBO=∠AOB=x,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠OEC,然后利用三角形的内角和等于180°列式表示出∠OBA,然后列出方程求解即可.
【详解】
(1)∵CB∥OA
∴∠C+∠COA=180°
∵∠C=100°
∴∠COA=180°-∠C=80°
∵∠FOB=∠AOB,OE平分∠COF
∴∠FOB+∠EOF=(∠AOF+∠COF)=∠COA=40°;
∴∠EOB=40°;
(2)∠OBC:∠OFC的值不发生变化
∵CB∥OA
∴∠OBC=∠BOA,∠OFC=∠FOA
∵∠FOB=∠AOB
∴∠FOA=2∠BOA
∴∠OFC=2∠OBC
∴∠OBC:∠OFC=1:2
(3)当平行移动AB至∠OBA=60°时,∠OEC=∠OBA.
设∠AOB=x,
∵CB∥AO,
∴∠CBO=∠AOB=x,
∵CB∥OA,AB∥OC,
∴∠OAB+∠ABC=180°,∠C+∠ABC=180°
∴∠OAB=∠C=100°.
∵∠OEC=∠CBO+∠EOB=x+40°,
∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,
∴x+40°=80°-x,
∴x=20°,
∴∠OEC=∠OBA=80°-20°=60°.
【点睛】
本题主要考查了平行线、角平分线的性质以及三角形内角和定理,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.
展开阅读全文