1、人教版七7年级下册数学期末测试题(附答案)一、选择题1如图所示,下列说法正确的是( )A与是内错角B与是同位角C与是同旁内角D与是内错角2下列车标,可看作图案的某一部分经过平移所形成的是( )A BCD3若点在第二象限,则点在第( )象限A一B二C三D四4下列命题是假命题的是( )A对顶角相等B两条直线被第三条直线所截,同位角相等C在同一平面内,垂直于同一条直线的两条直线互相平行D在同一平面内,过直线外一一点有且只有一条直线与已知直线平行5如图,点在延长线上,、交于,且,比的余角小,为线段上一动点,为上一点,且满足,为的平分线则下列结论:;平分;的角度为定值其中正确结论的个数有( )A1个B2
2、个C3个D4个6下列运算中:;,错误的个数有( )A1个B2个C3个D4个7如图,在中,交AC于点E,交BC于点F,连接DC,则的度数是( )A42B38C40D328如下图所示,动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,第2次运动到点,第3次运动到点,按照这样的运动规律,点第2021次运动到点( )ABCD九、填空题9已知是实数,且则的值是_.十、填空题10小明从镜子里看到对面电子钟的像如图所示,那么实际时间是_.十一、填空题11如图,直线与直线交于点,、是与的角平分线,则_度十二、填空题12如图,把一把直尺放在含度角的直角三角板上,量得,则的度数是_十三、填空题1
3、3把一张长方形纸条按如图所示折叠后,若,则_;十四、填空题14已知,若且是整数,则m_ 十五、填空题15若P(2a,2a+3)到两坐标轴的距离相等,则点P的坐标是_十六、填空题16在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放点P从原点O出发,以每秒1个单位长度的速度沿着等边三角形的边“OA1A1A2A2A3A3A4A4A5”的路线运动,设第n秒运动到点Pn(n为正整数),则点P2020的坐标是_十七、解答题17(1)(2)(3)十八、解答题18求下列各式中的x值:(1)(x1)24;(2)(2x+1)3+640;(3)x33十九、解答题19已知一个角的两边与另一
4、个角的两边分别平行,结合图1,探索这两个角之间的关系(1)如图1,已知与中,与相交于点问:与有何关系?请完成下面的推理过程理由:,结论:与关系是 (2)如图2,已知,则与有何关系?请直接写出你的结论(3)由(1)、(2)你得出的结论是:如果一个角的两边与另一个角的两边分别平行,那么 二十、解答题20在平面直角坐标系中,已知点,点(其中为常数,且),则称是点的“系置换点”例如:点的“3系置换点”的坐标为,即(1)点(2,0)的“2系置换点”的坐标为_;(2)若点的“3系置换点”的坐标是(-4,11),求点的坐标(3)若点(其中),点的“系置换点”为点,且,求的值;二十一、解答题21已知:是的小数
5、部分,是的小数部分(1)求的值;(2)求的平方根二十二、解答题22如图,阴影部分(正方形)的四个顶点在55的网格格点上(1)请求出图中阴影部分(正方形)的面积和边长 (2)若边长的整数部分为,小数部分为,求的值二十三、解答题23如图,已知直线射线,是射线上一动点,过点作交射线于点,连接作,交直线于点,平分(1)若点,都在点的右侧求的度数;若,求的度数(不能使用“三角形的内角和是”直接解题)(2)在点的运动过程中,是否存在这样的偕形,使?若存在,直接写出的度数;若不存在请说明理由二十四、解答题24(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从
6、空气中射入水中,再从水中射入空气中,形成光线b,根据光学知识有,请判断光线a与光线b是否平行,并说明理由(2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等,如图2有一口井,已知入射光线与水平线的夹角为,问如何放置平面镜,可使反射光线b正好垂直照射到井底?(即求与水平线的夹角)(3)如图3,直线上有两点A、C,分别引两条射线、,射线、分别绕A点,C点以1度/秒和3度/秒的速度同时顺时针转动,设时间为t,在射线转动一周的时间内,是否存在某时刻,使得与平行?若存在,求出所有满足条件的时间t二十五、解答题25如图所示,在三角形纸片中,将纸片的一角折叠,使点落
7、在内的点处.(1)若,_.(2)如图,若各个角度不确定,试猜想,之间的数量关系,直接写出结论.当点落在四边形外部时(如图),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,之间又存在什么关系?请说明(3)应用:如图:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的和是_.【参考答案】一、选择题1C解析:C【分析】根据同位角,同旁内角,内错角的定义可以得到结果【详解】解:A、与不是内错角,故错误;B、与是邻补角,故错误;C、与是同旁内角,故正确;D、与是同位角,故错误;故选C【点睛】本题主要考查了同位角,内错角,同旁内角的概念,比较简单2D【分析】根据平移定义:一个基本图
8、案按照一定的方向平移一定的距离进行分析即可【详解】解:A、不是经过平移所形成的,故此选项错误;B、不是是经过平移所形成的,故此选项错误;C、不是经过平解析:D【分析】根据平移定义:一个基本图案按照一定的方向平移一定的距离进行分析即可【详解】解:A、不是经过平移所形成的,故此选项错误;B、不是是经过平移所形成的,故此选项错误;C、不是经过平移所形成的,故此选项错误;D、是经过平移所形成的,故此选项正确;故选:D【点睛】此题主要考查了利用平移设计图案,关键是掌握平移定义3C【分析】应根据点P的坐标特征先判断出点Q的横纵坐标的符号,进而判断点Q所在的象限【详解】解:点在第二象限,1+a0,1-b0;
9、a-1, b-10, 即点在第三象限故选:C【点睛】解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负4B【分析】根据对顶角的性质、直线的性质、平行线的性质进行判断,即可得出答案【详解】A、对顶角相等;真命题;B、两条直线被第三条直线所截,同位角相等;假命题;只有两直线平行时同位角才相等;C、在同一平面内,垂直于同一条直线的两条直线互相平行真命题;D、在同一平面内,过直线外一一点有且只有一条直线与已知直线平行;真命题;故选:B【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题正确的命题叫做真命题,错误的命题叫做假命题5D【
10、分析】由可得AEBD,进而得到,结合即可得到结论;由得出,结合即可得解;由平行线的性质和内角和定理判断即可;根据角平分线的性质求解即可;【详解】,AEBD,结论正确;,平分,结论正确;,比的余角小,结论正确;为的平分线,结论正确;故正确的结论是;故答案选D【点睛】本题主要考查了平行线的判定与性质、余角和补角的性质,准确分析计算是解题的关键6D【分析】对每个选项依次计算判断即可.【详解】,故该项错误;无意义,故该项错误;,故该项错误;,故该项错误.共4个错误的,故选:D.【点睛】此题考查平方根、立方根的化简,熟记平方根、立方根的性质即可正确化简.7D【分析】由可得到与的关系,利用三角形的外角与内
11、角的关系可得结论【详解】解:,故选:【点睛】本题考查了平行线的性质与三角形的外角性质,掌握“三角形的外角等于与它不相邻的两个内角和”是解决本题的关键8A【分析】令P点第n次运动到的点为Pn点(n为自然数)列出部分Pn点的坐标,根据点的坐标变化找出规律“P4n(4n,0),P4n1(4n1,1),P4n2(4n2,0),P4n3(4解析:A【分析】令P点第n次运动到的点为Pn点(n为自然数)列出部分Pn点的坐标,根据点的坐标变化找出规律“P4n(4n,0),P4n1(4n1,1),P4n2(4n2,0),P4n3(4n3,1)”,根据该规律即可得出结论【详解】解:令P点第n次运动到的点为Pn点(
12、n为自然数)观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,1),P4(4,0),P5(5,1),P4n(4n,0),P4n1(4n1,1),P4n2(4n2,0),P4n3(4n3,1)202150541,P第2021次运动到点(2021,1)故选:A【点睛】本题考查了规律型中的点的坐标,属于基础题,难度适中,解决该题型题目时,根据点的变化罗列出部分点的坐标,根据坐标的变化找出变化规律是关键九、填空题96【解析】【分析】根据平方和算术平方根的非负性,求出x、y的值,代入计算得到答案【详解】解:由题意得,x20,y-30,解得,x2,y3,xy6,故答案为:6【点睛解
13、析:6【解析】【分析】根据平方和算术平方根的非负性,求出x、y的值,代入计算得到答案【详解】解:由题意得,x20,y-30,解得,x2,y3,xy6,故答案为:6【点睛】本题考查的是非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键十、填空题1021:05.【分析】利用镜面对称的性质求解镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称【详解】解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所解析:21:05.【分析】利用镜面对称的性质求解镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称【详解】解:根据镜面对称的性
14、质,题中所显示的时刻与21:05成轴对称,所以此时实际时刻为21:05故答案为21:05【点睛】本题考查镜面反射的原理与性质解决此类题应认真观察,注意技巧十一、填空题1160【分析】由角平分线的定义可求出AOE=EOC=COB=60,再根据对顶角相等即可求出AOD的度数【详解】OE平分AOC,AOE=EOC,OC平分BOE,解析:60【分析】由角平分线的定义可求出AOE=EOC=COB=60,再根据对顶角相等即可求出AOD的度数【详解】OE平分AOC,AOE=EOC,OC平分BOE,EOC=COBAOE=EOC=COB,AOE+EOC+COB=180COB=60,AOD=COB=60,故答案为
15、:60【点睛】本题主要考查了角平分线的应用以及对顶角相等的性质,熟练运用角平分线的定义是解题的关键十二、填空题12【分析】由已知可知,由平行可知,根据三角形外角的性质可知从而求得的答案【详解】已知可知直尺的两边平行故答案为:114【点睛】本题考查了平行线的性质,三角形的外角性质,掌握三解析:【分析】由已知可知,由平行可知,根据三角形外角的性质可知从而求得的答案【详解】已知可知直尺的两边平行故答案为:114【点睛】本题考查了平行线的性质,三角形的外角性质,掌握三角形的外角性质是解题的关键十三、填空题1355【分析】直接根据补角的定义可知AOB+BOG+BOG=180,再由图形翻折变换的性质可知B
16、OG=BOG,再由平行线的性质可得出结论【详解】解:AOB=70,解析:55【分析】直接根据补角的定义可知AOB+BOG+BOG=180,再由图形翻折变换的性质可知BOG=BOG,再由平行线的性质可得出结论【详解】解:AOB=70,AOB+BOG+BOG=180,BOG+BOG=180-70=110BOG由BOG翻折而成,BOG=BOG,BOG= =55ABCD,OGD=BOG=55故答案为:55【点睛】本题考查的是平行线的性质,熟知图形翻折不变性的性质是解答此题的关键十四、填空题142【分析】根据题意可知m是整数,然后求出m的范围即可得出m的具体数值,然后根据是整数即可求出答案【详解】解:是
17、整数,m是整数,m24,2m2,m2,1解析:2【分析】根据题意可知m是整数,然后求出m的范围即可得出m的具体数值,然后根据是整数即可求出答案【详解】解:是整数,m是整数,m24,2m2,m2,1,0,1,2当m2或1时,是整数,m=2故答案为:2【点睛】本题考查算术平方根和无理数大小的估算,解题的关键是根据条件求出m的范围,本题属于中等题型十五、填空题15(,)或(7,7).【分析】根据题意可得关于a的绝对值方程,解方程可得a的值,进一步即得答案.【详解】解:P(2a,2a+3)到两坐标轴的距离相等,.或,解得或,当时,P点解析:(,)或(7,7).【分析】根据题意可得关于a的绝对值方程,解
18、方程可得a的值,进一步即得答案.【详解】解:P(2a,2a+3)到两坐标轴的距离相等,.或,解得或,当时,P点坐标为(,);当时,P点坐标为(7,7).故答案为(,)或(7,7).【点睛】本题考查了直角坐标系中点的坐标特征,根据题意列出方程是解题的关键.十六、填空题16【分析】先分别求出点的坐标,再归纳类推出一般规律,由此即可得出答案【详解】解:由题意得:点的坐标是,点的坐标是,点的坐标是,点的坐标是,归纳类推得:点的坐标是,其中为正整数,因为解析:【分析】先分别求出点的坐标,再归纳类推出一般规律,由此即可得出答案【详解】解:由题意得:点的坐标是,点的坐标是,点的坐标是,点的坐标是,归纳类推得
19、:点的坐标是,其中为正整数,因为,所以点的坐标是,故答案为:【点睛】本题考查了点坐标规律探索,正确归纳类推出一般规律是解题关键十七、解答题17(1);(2);(3)【分析】(1)先化简后计算即可;(2)先化简后计算即可;(3)首先去括号,然后再合并即可【详解】解:(1)原式(2)原式(3)原式【点睛】此题主要考查了实解析:(1);(2);(3)【分析】(1)先化简后计算即可;(2)先化简后计算即可;(3)首先去括号,然后再合并即可【详解】解:(1)原式(2)原式(3)原式【点睛】此题主要考查了实数运算,关键是掌握数的开方,正确化简各数十八、解答题18(1)x3或x1;(2)x2.5;(3)x1
20、.5【分析】(1)直接开平方进行解答;(2)先移项,再开立方进行解答(3)先移项,系数化为1,再开平方法进行解答【详解】解:(解析:(1)x3或x1;(2)x2.5;(3)x1.5【分析】(1)直接开平方进行解答;(2)先移项,再开立方进行解答(3)先移项,系数化为1,再开平方法进行解答【详解】解:(1)开方得:x12或x12,解得:x3或x1;(2)方程整理得:(2x+1)364,开立方得:2x+14,解得:x2.5;(3)方程整理得:x3,开立方得:x1.5【点睛】本题考查了平方根和立方根的概念注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根立方根的性质:一个正数的
21、立方根式正数,一个负数的立方根是负数,0的立方根式0十九、解答题19(1)180;两直线平行,同旁内角互补;两直线平行,同位角相等;180;互补;(2)(相等);(3)这两个角相等或互补【分析】(1)如图1,根据,即可得与的关系;(2)如图2,根据解析:(1)180;两直线平行,同旁内角互补;两直线平行,同位角相等;180;互补;(2)(相等);(3)这两个角相等或互补【分析】(1)如图1,根据,即可得与的关系;(2)如图2,根据,即可得与的关系;(3)由(1)(2)即可得出结论【详解】解:(1)理由:,(两直线平行,同旁内角互补), (两直线平行,同位角相等),结论:与关系是互补故答案为:;
22、两直线平行,同旁内角互补;两直线平行,同位角相等;相等(2),理由如下:,(3)由(1)、(2)你得出的结论是:如果一个角的两边与另一个角的两边分别平行,那么这两个角互补或相等,故答案为:这两个角互补或相等【点睛】本题考查了平行线的性质,解题的关键是熟练掌握平行线的性质定理二十、解答题20(1);(2);(3)【分析】(1)根据题中新定义直接将m的值代入即可得出答案;(2)根据题中新定义列出关于、的二元一次方程组求解即可得出答案;(3)根据题中新定义可得出点B的坐标,再根据解析:(1);(2);(3)【分析】(1)根据题中新定义直接将m的值代入即可得出答案;(2)根据题中新定义列出关于、的二元
23、一次方程组求解即可得出答案;(3)根据题中新定义可得出点B的坐标,再根据列方程求解即可得出答案【详解】解:(1)点(2,0)的“2系置换点”的坐标为,即;(2)由题意得:解得: 点A的坐标为:;(3)点为即点B坐标为,为常数,且【点睛】本题考查了二元一次方程组的解法、绝对值方程,理解“系置换点”的定义并能运用是本题的关键二十一、解答题21(1),;(2)3【分析】(1)首先得出12,进而得出a,b的值;(2)根据平方根即可解答【详解】(1)121011,78的整数部分为10,的整数部分为7,解析:(1),;(2)3【分析】(1)首先得出12,进而得出a,b的值;(2)根据平方根即可解答【详解】
24、(1)121011,78的整数部分为10,的整数部分为7,;(2)原式的平方根为:【点睛】此题主要考查了估算无理数的大小,正确得出a,b的值是解题关键二十二、解答题22(1)S=13,边长为 ;(2)6【详解】分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案解析:(1)S=13,边长为 ;(2)6【详解】分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案详解:解:(1)S=25-12=13, 边长为
25、 ,(2)a=3,b= -3 原式=9+-3-=6点睛:本题主要考查的就是无理数的估算,属于中等难度的题型解决这个问题的关键就是根据正方形的面积得出边长二十三、解答题23(1)35;(2)55;(2)存在,或【分析】(1)依据平行线的性质以及角平分线的定义,即可得到PCG的度数;依据平行线的性质以及角平分线的定义,即可得到ECG=GCF=20解析:(1)35;(2)55;(2)存在,或【分析】(1)依据平行线的性质以及角平分线的定义,即可得到PCG的度数;依据平行线的性质以及角平分线的定义,即可得到ECG=GCF=20,再根据PQCE,即可得出CPQ=ECP=60;(2)设EGC=3x,EFC
26、=2x,则GCF=3x-2x=x,分两种情况讨论:当点G、F在点E的右侧时,当点G、F在点E的左侧时,依据等量关系列方程求解即可【详解】解:(1)ABCD,CEB+ECQ=180,CEB=110,ECQ=70,PCF=PCQ,CG平分ECF,PCGPCF+FCGQCF+FCEECQ35;ABCD,QCG=EGC,QCG+ECG=ECQ=70,EGC+ECG=70,又EGC-ECG=30,EGC=50,ECG=20,ECG=GCF=20,PCFPCQ(7040)15,PQCE,CPQ=ECP=ECQ-PCQ=70-15=55(2)52.5或7.5,设EGC=3x,EFC=2x,当点G、F在点E的
27、右侧时,ABCD,QCG=EGC=3x,QCF=EFC=2x,则GCF=QCG-QCF=3x-2x=x,PCFPCQFCQEFCx,则ECG=GCF=PCF=PCD=x,ECD=70,4x=70,解得x=17.5,CPQ=3x=52.5;当点G、F在点E的左侧时,反向延长CD到H,EGC=3x,EFC=2x,GCH=EGC=3x,FCH=EFC=2x,ECG=GCF=GCH-FCH=x,CGF=180-3x,GCQ=70+x,180-3x=70+x,解得x=27.5,FCQ=ECF+ECQ=27.52+70=125,PCQFCQ62.5,CPQ=ECP=62.5-55=7.5,【点睛】本题主要
28、考查了平行线的性质,掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键二十四、解答题24(1)平行,理由见解析;(2)65;(3)5秒或95秒【分析】(1)根据等角的补角相等求出3与4的补角相等,再根据内错角相等,两直线平行即可判定ab;(2)根据入射光线与镜面的夹角与反解析:(1)平行,理由见解析;(2)65;(3)5秒或95秒【分析】(1)根据等角的补角相等求出3与4的补角相等,再根据内错角相等,两直线平行即可判定ab;(2)根据入射光线与镜面的夹角与反射光线与镜面的夹角相等可得1=2,然后根据平角等于180求出1的度数,再加上40即可得解;(3)分AB与CD在EF的两侧,分
29、别表示出ACD与BAC,然后根据两直线平行,内错角相等列式计算即可得解;CD旋转到与AB都在EF的右侧,分别表示出DCF与BAC,然后根据两直线平行,同位角相等列式计算即可得解;CD旋转到与AB都在EF的左侧,分别表示出DCF与BAC,然后根据两直线平行,同位角相等列式计算即可得解【详解】解:(1)平行理由如下:如图1,3=4,5=6,1=2,1+5=2+6,ab(内错角相等,两直线平行);(2)如图2:入射光线与镜面的夹角与反射光线与镜面的夹角相等,1=2,入射光线a与水平线OC的夹角为40,b垂直照射到井底,1+2=180-40-90=50,150=25,MN与水平线的夹角为:25+40=
30、65,即MN与水平线的夹角为65,可使反射光线b正好垂直照射到井底;(3)存在如图,AB与CD在EF的两侧时,BAF=105,DCF=65,ACD=180-65-3t=115-3t,BAC=105-t,要使ABCD,则ACD=BAC,即115-3t=105-t,解得t=5;如图,CD旋转到与AB都在EF的右侧时,BAF=105,DCF=65,DCF=360-3t-65=295-3t,BAC=105-t,要使ABCD,则DCF=BAC,即295-3t=105-t,解得t=95;如图,CD旋转到与AB都在EF的左侧时,BAF=105,DCF=65,DCF=3t-(180-65+180)=3t-29
31、5,BAC=t-105,要使ABCD,则DCF=BAC,即3t-295=t-105,解得t=95,此时t105,此情况不存在综上所述,t为5秒或95秒时,CD与AB平行【点睛】本题考查了平行线的判定与性质,光学原理,读懂题意并熟练掌握平行线的判定方法与性质是解题的关键,(3)要注意分情况讨论二十五、解答题25(1)50;(2)见解析;见解析;(3)360.【分析】(1)根据题意,已知,可结合三角形内角和定理和折叠变换的性质求解;(2)先根据折叠得:ADE=ADE,AED=A解析:(1)50;(2)见解析;见解析;(3)360.【分析】(1)根据题意,已知,可结合三角形内角和定理和折叠变换的性质
32、求解;(2)先根据折叠得:ADE=ADE,AED=AED,由两个平角AEB和ADC得:1+2等于360与四个折叠角的差,化简得结果;利用两次外角定理得出结论;(3)由折叠可知1+2+3+4+5+6等于六边形的内角和减去(BGF+BFG)以及(CDE+CED)和(AHL+ALH),再利用三角形的内角和定理即可求解【详解】解:(1),A=A=180-(65+70)=45,AED+ADE =180-A=135,2=360-(C+B+1+AED+ADE)=360-310=50;(2),理由如下由折叠得:ADE=ADE,AED=AED,AEB+ADC=360,1+2=360-ADE-ADE-AED-AED=360-2ADE-2AED,1+2=2(180-ADE-AED)=2A;,理由如下:是的一个外角.是的一个外角又(3)如图由题意知,1+2+3+4+5+6=720-(BGF+BFG)-(CDE+CED)-(AHL+ALH)=720-(180-B)-(180-C)-(180-A)=180+(B+C+A)又B=B,C=C,A=A,A+B+C=180,1+2+3+4+5+6=360【点睛】题主要考查了折叠变换、三角形、四边形内角和定理注意折叠前后图形全等;三角形内角和为180;四边形内角和等于360度