1、人教中学七年级下册数学期末质量检测题(附答案)一、选择题11.96的算术平方根是()A0.14B1.4CD1.42下列四幅图案中,通过平移能得到图案E的是( )AABBCCDD3在下列所给出坐标的点中,在第二象限的是()A(0,3)B(2,1)C(1,2)D(1,2)4下列四个命题:是64的立方根;5是25的算术平方根;如果两条直线都与第三条直线平行,那么这两条直线也互相平行;在平面直角坐标系中,与两坐标轴距离都是2的点有且只有2个其中真命题有( )个A1B2C3D45下列几个命题中,真命题有( )两条直线被第三条直线所截,内错角相等;如果和是对顶角,那么;一个角的余角一定小于这个角的补角;三
2、角形的一个外角大于它的任一个内角A1个B2个C3个D46下列算式,正确的是( )ABCD7如图,ABCD,直线EF分别交AB、CD于点E、F,FH平分EFD,若1110,则2的度数为()A45B40C55D358如图,在平面直角坐标系中,一动点从原点O出发,按“向上、向右、向下、向下、向右、向上”的方向依次不断地移动,每次移动1个单位长度,得到点A1(0,1),A2(1,1),A3(1,0),A4(1,1),那么点A23的坐标是()A(7,1)B(8,1)C(7,1)D(8,1)九、填空题9若a、b为实数,且满足|a2|+0,则ab的立方根为_十、填空题10已知点P(3,1)关于x轴的对称点Q
3、的坐标是(ab,1b),则a_,b_十一、填空题11如图,在ABC中,CD是它的角平分线,DEAC于点 E若BC6cm,DE2cm,则BCD的面积为_cm2十二、填空题12如图所示,已知ABCD,EF平分CEG,180,则2的度数为_十三、填空题13如图,四边形ABCD中,点M、N分别在AB、BC上,将BMN沿MN翻折,得FMN,若MFAD,FNDC,则D的度数为 _十四、填空题14如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若,则m,n,p,q四个实数中,绝对值最大的是_十五、填空题15若点P(a+3,2a+4)在y轴上,则点P到x轴的距离为_十六、填空题16如图,在平
4、面直角坐标系中,有若干个整数点,其顺序按图中“”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0),根据这个规律探索可得第2021个点的坐标是_十七、解答题17计算:(1);(2)十八、解答题18求下列各式中的x值:(1)16(x+1)225; (2)8(1x)3125十九、解答题19完成下面的证明:已知:如图,求证:证明:(已知),_(_),(已知),_即_(_)二十、解答题20如图,将 向右平移 个单位长度,然后再向上平移 个单位长度,可以得到 (1)画出平移后的 , 的顶点 的坐标为 ;顶点 的坐标为 (2)求 的面积(3)已知点 在 轴上,以
5、 , 为顶点的三角形面积为 ,则 点的坐标为 二十一、解答题21已知是的整数部分,是的小数部分,求代数式的平方根二十二、解答题22如图,这是由8个同样大小的立方体组成的魔方,体积为64(1)求出这个魔方的棱长;(2)图中阴影部分是一个正方形ABCD,求出阴影部分的边长二十三、解答题23(1)如图,若B+D=E,则直线AB与CD有什么位置关系?请证明(不需要注明理由)(2)如图中,AB/CD,又能得出什么结论?请直接写出结论 (3)如图,已知AB/CD,则1+2+n-1+n的度数为 二十四、解答题24已知直线,M,N分别为直线,上的两点且,P为直线上的一个动点类似于平面镜成像,点N关于镜面所成的
6、镜像为点Q,此时(1)当点P在N右侧时:若镜像Q点刚好落在直线上(如图1),判断直线与直线的位置关系,并说明理由;若镜像Q点落在直线与之间(如图2),直接写出与之间的数量关系;(2)若镜像,求的度数二十五、解答题25阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120,40,20,这个三角形就是一个“梦想三角形”反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍(1)如果一个“梦想三角形”有一个角为108,那么这个“梦想三角形”的最
7、小内角的度数为_(2)如图1,已知MON60,在射线OM上取一点A,过点A作ABOM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O、B重合),若ACB=80判定AOB、AOC是否是“梦想三角形”,为什么?(3)如图2,点D在ABC的边上,连接DC,作ADC的平分线交AC于点E,在DC上取一点F,使得EFC+BDC180,DEFB若BCD是“梦想三角形”,求B的度数【参考答案】一、选择题1B解析:B【分析】根据算术平方根的定义:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根即可得出答案【详解】解:,1.96的算术平方根是1.4,故选:B【点睛】
8、本题考查了算术平方根,掌握算术平方根的定义是解题的关键,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根2B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件解析:B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件的原图是B;A,D选项改变了方向,故错误,C选项中,三角形和四边形位置不对,故C错误故选
9、:B【点睛】在平面内,把一个图形整体沿某一个方向移动,这种图形的平行移动,叫做平移变换,简称平移平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等确定一个图形平移的方向和距离,只需确定其中一个点平移的方向和距离3B【分析】根据平面直角坐标系中点的坐标特征逐项分析即可【详解】解:A.(0,3)在y轴上,故不符合题意;B.(2,1)在第二象限,故符合题意;C.(1,2) 在第四象限,故不符合题意;D.(1,2) 在第三象限,故不符合题意;故选B【点睛】本题考查了平面直角坐标系中点的坐标特征,正确掌握各象限内点的坐标特点是解题关键第一象限内点的坐标特征为(+,+),第二象限
10、内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为04B【分析】根据立方根和算术平方根的定义、平行线的性质、点到直线的距离逐项判断即可【详解】64的立方根是4,故是假命题; 25的算数平方根是5,故是真命题;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,故是真命题;与两坐标轴距离都是2的点有(2,2)、(2,-2)、(-2,2)、(-2,-2)共4点,故是假命题故选:B【点睛】本题考查命题真、假的判断正确掌握相关定义、性质与判定是解题关键5B【分析】根据平行线的性质对进行判断;根据对顶角的性质
11、对进行判断;根据余角与补角的定义对进行判断;根据三角形外角性质对进行判断【详解】解:两条平行直线被第三条直线所截,内错角相等,所以错误;如果1和2是对顶角,那么1=2,所以正确;一个角的余角一定小于这个角的补角,所以正确;三角形的外角大于任何一个与之不相邻的一个内角,所以错误故选:B【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式有些命题的正确性是用推理证实的,这样的真命题叫做定理6A【分析】根据平方根、立方根及算术平方根的概念逐一计算即可得答案【详解】A.,计算正确,故该
12、选项符合题意,B.,故该选项计算错误,不符合题意,C.,故该选项计算错误,不符合题意,D.,故该选项计算错误,不符合题意,故选:A【点睛】本题考查平方根、立方根、算术平方根的概念,熟练掌握定义是解题关键7D【分析】根据对顶角相等求出3,再根据两直线平行,同旁内角互补求出DFE,然后根据角平分线的定义求出DFH,再根据两直线平行,内错角相等解答【详解】解:1=110,3=1=110,ABCD,DFE=180-3=180-110=70,HF平分EFD,DFH=DFE=70=35,ABCD,2=DFH=35故选:D【点睛】本题考查了平行线的性质,角平分线的定义,对顶角相等的性质,是基础题,熟记各性质
13、并准确识图是解题的关键8D【分析】由题意找到动点每移动六次一个循环的规律,根据此规律即可解答【详解】解:由题意得,动点每移动六次为一个循环,则移动23次为:,则A23的横坐标为:,纵坐标为:,故A23的坐解析:D【分析】由题意找到动点每移动六次一个循环的规律,根据此规律即可解答【详解】解:由题意得,动点每移动六次为一个循环,则移动23次为:,则A23的横坐标为:,纵坐标为:,故A23的坐标为,故选:D【点睛】本题考查了点的坐标规律探究,根基题意得出动点每移动六次为一个循环是解题的关键九、填空题9-1【分析】根据非负数的性质,求出a、b的值,再进而计算所给代数式的立方根【详解】解:|a2|+0,
14、|a2|0,0a20,3b0a2,b3,故答案为:解析:-1【分析】根据非负数的性质,求出a、b的值,再进而计算所给代数式的立方根【详解】解:|a2|+0,|a2|0,0a20,3b0a2,b3,故答案为:1【点睛】本题主要考查了非负数的性质,立方根的性质,关键是根据“两个非负数和为0,则这两个数都为0”列出方程求得a、b的值十、填空题100 【分析】根据题意结合关于x轴对称点的性质得出关于a,b的等式,进而求出答案【详解】解:点P(3,-1)关于x轴的对称点Q的坐标是(a+b,1-b),a+b=3,1-b=1,解析:0 【分析】根据题意结合关于x轴对称点的性质得出关于a,b的等式,进而求出答
15、案【详解】解:点P(3,-1)关于x轴的对称点Q的坐标是(a+b,1-b),a+b=3,1-b=1,解得:a=3,b=0,故答案为:3,0【点睛】此题主要考查了关于x轴对称点的性质,正确得出a,b的值是解题关键十一、填空题116【分析】根据角平分线的性质计算即可;【详解】作,CD是角平分线,DEAC,又BC6cm,;故答案是6【点睛】本题主要考查了角平分线的性质,准确计算是解题的关解析:6【分析】根据角平分线的性质计算即可;【详解】作,CD是角平分线,DEAC,又BC6cm,;故答案是6【点睛】本题主要考查了角平分线的性质,准确计算是解题的关键十二、填空题1250【分析】由角平分线的定义,结合
16、平行线的性质,易求2的度数【详解】解:EF平分CEG,CEG2CEF,又ABCD,2CEF(1801)50,解析:50【分析】由角平分线的定义,结合平行线的性质,易求2的度数【详解】解:EF平分CEG,CEG2CEF,又ABCD,2CEF(1801)50,故答案为:50【点睛】本题主要考查了平行线的性质,解决问题的关键是利用平行线的性质确定内错角相等,然后根据角平分线定义得出所求角与已知角的关系十三、填空题1395【分析】首先利用平行线的性质得出BMF100,FNB70,再利用翻折变换的性质得出FMNBMN50,FNMMNB35,进而求出B的度数以及得出D的度数解析:95【分析】首先利用平行线
17、的性质得出BMF100,FNB70,再利用翻折变换的性质得出FMNBMN50,FNMMNB35,进而求出B的度数以及得出D的度数【详解】解:MFAD,FNDC,A100,C70,BMF100,FNB70,将BMN沿MN翻折,得FMN,FMNBMN50,FNMMNB35,FB180503595,D360100709595故答案为:95【点睛】此题主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出FMNBMN,FNMMNB是解题关键十四、填空题14【分析】根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决【详解】,n和q互为相反数,O在线段NQ
18、的中点处,绝对值最大的是点P表示的数故解析:【分析】根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决【详解】,n和q互为相反数,O在线段NQ的中点处,绝对值最大的是点P表示的数故答案为:【点睛】本题考查了实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答十五、填空题152【分析】点在y轴上,则横坐标为0,可求得a的值,然后再判断点到x轴的距离即可【详解】点P(a+3,2a+4)在y轴上a+3=0,解得:a=3P(0,2)点P到x轴的距离解析:2【分析】点在y轴上,则横坐标为0,可求得a的值,然后再判断点到x轴的距离即可【详解】点P(a+3,2
19、a+4)在y轴上a+3=0,解得:a=3P(0,2)点P到x轴的距离为:2故答案为:2【点睛】本题考查坐标点与坐标轴的关系,注意,点到坐标轴的距离一定是非负的十六、填空题16(64,4)【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,2横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0解析:(64,4)【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,2横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数【详解】解:把第一个点(1,0
20、)作为第一列,(2,1)和(2,0)作为第二列,依此类推,则第一列有一个数,第二列有2个数,第n列有n个数则n列共有个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上因为1+2+3+63=2016,则第2021个数一定在第64列,由下到上是第5个数因而第2021个点的坐标是(64,4)故答案为:(64,4)【点睛】本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是一道比较容易出错的题目十七、解答题17(1)0.5;(2)4【分析】(1)根据立方根,算术平方根的定义对各项进行化简,最后相加减即可;(2)根据实数的混合运算法则进行求解【详解】解:
21、(1);(2)【点睛】本题考查实数解析:(1)0.5;(2)4【分析】(1)根据立方根,算术平方根的定义对各项进行化简,最后相加减即可;(2)根据实数的混合运算法则进行求解【详解】解:(1);(2)【点睛】本题考查实数的运算,熟练掌握立方根,算术平方根的定义是解题的关键十八、解答题18(1)或;(2)【分析】(1)根据平方根,即可解答;(2)根据立方根,即可解答【详解】解:(1)等式两边都除以16,得. 等式两边开平方,得. 所以,得. 所以,解析:(1)或;(2)【分析】(1)根据平方根,即可解答;(2)根据立方根,即可解答【详解】解:(1)等式两边都除以16,得. 等式两边开平方,得. 所
22、以,得. 所以, (2)等式两边都除以8,得. 等式两边开立方,得. 所以,【点睛】本题考查平方根、立方根,解题关键是熟记平方根、立方根.十九、解答题19BAC,垂直的定义,180,BAD,同旁内角互补,两直线平行【分析】根据垂直的定义和已知证明BAD,即,由同旁内角互补,两直线平行即可得出结论【详解】证明:(已知),BAC(解析:BAC,垂直的定义,180,BAD,同旁内角互补,两直线平行【分析】根据垂直的定义和已知证明BAD,即,由同旁内角互补,两直线平行即可得出结论【详解】证明:(已知),BAC(垂直的定义),(已知),180即BAD(同旁内角互补,两直线平行)故答案为:BAC,垂直的定
23、义,180,BAD,同旁内角互补,两直线平行【点睛】本题主要考查了垂直定义和平行线的判定,证明BAD是解题关键二十、解答题20(1)见解析,;(2)5;(3) 或 【分析】(1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可;(2)根据的面积等于其所在的矩形减去周围几个三角形的面积求解即可;(3)设P点解析:(1)见解析,;(2)5;(3) 或 【分析】(1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可;(2)根据的面积等于其所在的矩形减去周围几个三角形的面积求解即可;(3)设P点得坐标为 ,因为以 ,P为顶点得三角形得面积为 ,所以 ,求解即可.【详解】解:(1) 如图,
24、为所作(0,3),(4,0);(2) 计算 的面积 (3)设P点得坐标为(t,0),因为以 , 为顶点得三角形得面积为 ,所以 ,解得 或 ,即 点坐标为 (3,0) 或(5,0)【点睛】本题主要考查了坐标与图形,平移作图,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解.二十一、解答题21【分析】根据可得,即可得到的整数部分是3,小数部分是,即可求解【详解】解:,的整数部分是3,则,的小数部分是,则,9的平方根为【点睛】本题考查实数的估算、实数解析:【分析】根据可得,即可得到的整数部分是3,小数部分是,即可求解【详解】解:,的整数部分是3,则,的小数部分是,则,9的平方根为【点睛】本题
25、考查实数的估算、实数的运算、平方根的定义,掌握实数估算的方法是解题的关键二十二、解答题22(1)棱长为4;(2)边长为:(或)【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案【详解】解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4解析:(1)棱长为4;(2)边长为:(或)【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案【详解】解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4(2)因为正方体的棱长为4,所以AB【点睛】本题考查的是立方根与算术平方根的理解与计算,由实际的情境去理解问题本身就是求一个数的立方
26、根与算术平方根是关键二十三、解答题23(1)AB/CD,证明见解析;(2)E1+E2+En=B+F1+F2+Fn-1+D ;(3)(n-1)180【分析】(1)过点E作EF/AB,利用平行线的性质则可得出解析:(1)AB/CD,证明见解析;(2)E1+E2+En=B+F1+F2+Fn-1+D ;(3)(n-1)180【分析】(1)过点E作EF/AB,利用平行线的性质则可得出B=BEF,再由已知及平行线的判定即可得出ABCD;(2)如图,过点E作EMAB,过点F作FNAB,过点G作GHAB,根据探究(1)的证明过程及方法,可推出E+G=B+F+D,则可由此得出规律,并得出E1+E2+En=B+F
27、1+F2+Fn-1+D;(3)如图,过点M作EFAB,过点N作GHAB,则可由平行线的性质得出1+2+MNG =1802,依此即可得出此题结论【详解】解:(1)过点E作EF/AB, B=BEF BEF+FED=BED,B+FED=BED B+D=E(已知),FED=D CD/EF(内错角相等,两直线平行)AB/CD (2)过点E作EMAB,过点F作FNAB,过点G作GHAB,ABCD,ABEMFNGHCD,B=BEM,MEF=EFN,NFG=FGH,HGD=D,BEF+FGD=BEM+MEF+FGH+HGD=B+EFN+NFG+D=B+EFG+D,即E+G=B+F+D由此可得:开口朝左的所有角
28、度之和与开口朝右的所有角度之和相等,E1+E2+En=B+F1+F2+Fn-1+D 故答案为:E1+E2+En=B+F1+F2+Fn-1+D(3)如图,过点M作EFAB,过点N作GHAB, APM+PME=180,EFAB,GHAB,EFGH,EMN+MNG=180,1+2+MNG =1802,依次类推:1+2+n-1+n=(n-1)180故答案为:(n-1)180【点睛】本题考查了平行线的性质与判定,属于基础题,关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形二十四、解答题24(1),证明见解析,(2)或【分析】(1) 根据和镜像证出,即可判断直线与直线的位置关系,过点Q作Q
29、FCD,根据平行线的性质证即可;(2)过点Q作QFCD,根据点P的位置不同,解析:(1),证明见解析,(2)或【分析】(1) 根据和镜像证出,即可判断直线与直线的位置关系,过点Q作QFCD,根据平行线的性质证即可;(2)过点Q作QFCD,根据点P的位置不同,分类讨论,依据平行线的性质求解即可【详解】(1),证明:,;过点Q作QFCD,;(2)如图,当点P在N右侧时,过点Q作QFCD,同(1)得,如图,当点P在N左侧时,过点Q作QFCD,同(1)得,同理可得,;综上,的度数为或【点睛】本题考查了平行线的性质与判定,解题关键是恰当的作辅助线,熟练利用平行线的性质推导角之间的关系二十五、解答题25(
30、1)36或18;(2)AOB、AOC都是“梦想三角形”,证明详见解析;(3)B36或B【分析】(1)根据三角形内角和等于180,如果一个“梦想三角形”有一个角为108,解析:(1)36或18;(2)AOB、AOC都是“梦想三角形”,证明详见解析;(3)B36或B【分析】(1)根据三角形内角和等于180,如果一个“梦想三角形”有一个角为108,可得另两个角的和为72,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180108108336,72(13)18,由此比较得出答案即可;(2)根据垂直的定义、三角形内角和定理求出ABO、OAC的度数,根据“梦想三角形”的定义判断即可;(3)根
31、据同角的补角相等得到EFCADC,根据平行线的性质得到DEFADE,推出DEBC,得到CDEBCD,根据角平分线的定义得到ADECDE,求得BBCD,根据“梦想三角形”的定义求解即可【详解】解:当108的角是另一个内角的3倍时,最小角为180108108336,当18010872的角是另一个内角的3倍时,最小角为72(13)18,因此,这个“梦想三角形”的最小内角的度数为36或18故答案为:18或36(2)AOB、AOC都是“梦想三角形” 证明:ABOM,OAB90,ABO90MON30,OAB3ABO,AOB为“梦想三角形”, MON60,ACB80,ACBOACMON,OAC806020,AOB3OAC,AOC是“梦想三角形” (3)解:EFCBDC180,ADCBDC180,EFCADC,ADEF, DEFADE,DEFB,BADE,DEBC, CDEBCD,AE平分ADC,ADECDE,BBCD,BCD是“梦想三角形”,BDC3B,或B3BDC, BDCBCDB180,B36或B【点睛】本题考查的是三角形内角和定理、“梦想三角形”的概念,用分类讨论的思想解决问题是解本题的关键