收藏 分销(赏)

人教中学七年级下册数学期末复习卷附答案.doc

上传人:精**** 文档编号:1861263 上传时间:2024-05-10 格式:DOC 页数:25 大小:667.54KB 下载积分:10 金币
下载 相关 举报
人教中学七年级下册数学期末复习卷附答案.doc_第1页
第1页 / 共25页
人教中学七年级下册数学期末复习卷附答案.doc_第2页
第2页 / 共25页


点击查看更多>>
资源描述
人教中学七年级下册数学期末复习卷附答案 一、选择题 1.“9的平方根”这句话用数学符号表示为() A. B.± C. D.± 2.下列汽车商标图案中,可以由一个“基本图案”通过连续平移得到的是(  ) A. B. C. D. 3.在平面直角坐标系中,点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列命题中属假命题的是(  ) A.两直线平行,内错角相等 B.a,b,c是直线,若a⊥b,b⊥c,则a⊥c C.a,b,c是直线,若ab,bc,则ac D.无限不循环小数是无理数,每一个无理数都可以用数轴上的一个点表示 5.下列几个命题中,真命题有( ) ①两条直线被第三条直线所截,内错角相等; ②如果和是对顶角,那么; ③一个角的余角一定小于这个角的补角; ④三角形的一个外角大于它的任一个内角. A.1个 B.2个 C.3个 D.4 6.下列说法中正确的是( ) ①1的平方根是1; ②5是25的算术平方根; ③(﹣4)2的平方根是﹣4; ④(﹣4)3的立方根是﹣4; ⑤0.01是0.1的一个平方根. A.①④ B.②④ C.②③ D.②⑤ 7.如图,将一张长方形纸片沿折叠.使顶点,分别落在点,处,交于点,若,则( ) A. B. C. D. 8.如图,在平面直角坐标系中,一动点从原点O出发,按“向上、向右、向下、向下、向右、向上…”的方向依次不断地移动,每次移动1个单位长度,得到点A1(0,1),A2(1,1),A3(1,0),A4(1,﹣1),…那么点A23的坐标是(  ) A.(7,﹣1) B.(8,1) C.(7,1) D.(8,﹣1) 九、填空题 9.若则 ________. 十、填空题 10.在平面直角坐标系中,若点和点关于轴对称,则____. 十一、填空题 11.如图,直线与直线交于点,、是与的角平分线,则______度. 十二、填空题 12.如图,,直角三角板直角顶点在直线上.已知,则的度数为______°. 十三、填空题 13.如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C’处,折痕为EF,若∠ABE=30°,则∠EFC’的度数为____________. 十四、填空题 14.a是不为2的有理数,我们把2称为a的“文峰数”如:3的“文峰数”是,-2的“文峰数”是,已知a1=3,a2是a1的“文峰数”, a3是a2的“文峰数”, a4是a3的“文峰数”,……,以此类推,则a2020=______ 十五、填空题 15.点到两坐标轴的距离相等,则________. 十六、填空题 16.在平面直角坐标系中,已知点A(﹣4,0),B(0,3),对△AOB连续作图所示的旋转变换,依次得到三角形(1),(2),(3),(4)…,那么第(2013)个三角形的直角顶点坐标是______ 十七、解答题 17.(1)计算: (2)计算: (3)已知,求的值. 十八、解答题 18.求下列各式中的值: (1); (2); (3). 十九、解答题 19.填充证明过程和理由. 如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE. 证明:∵∠B+∠BCD=180°(已知), ∴AB∥CD(   ). ∴∠B=  (   ). 又∵∠B=∠D(已知), ∴∠D=∠  . ∴AD∥BE(   ). ∴∠E=∠DFE(   ). 二十、解答题 20.如图①,在平面直角坐标系中,点、在轴上,,,. (1)写出点、、的坐标. (2)如图②,过点作交轴于点,求的大小. (3)如图③,在图②中,作、分别平分、,求的度数. 二十一、解答题 21.阅读下面的文字,解答问题: 大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的.因为的整数部分是,将这个数减去其整数部分,差就是小数部分. 根据以上内容,请解答: 已知,其中是整数,,求的值. 二十二、解答题 22.已知在的正方形网格中,每个小正方形的边长为1. (1)计算图①中正方形的面积与边长. (2)利用图②中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数和. 二十三、解答题 23.已知,.点在上,点在 上. (1)如图1中,、、的数量关系为: ;(不需要证明);如图2中,、、的数量关系为: ;(不需要证明) (2)如图 3中,平分,平分,且,求的度数; (3)如图4中,,平分,平分,且,则的大小是否发生变化,若变化,请说明理由,若不变化,求出么的度数. 二十四、解答题 24.如图1,由线段组成的图形像英文字母,称为“形”. (1)如图1,形中,若,则______; (2)如图2,连接形中两点,若,试探求与的数量关系,并说明理由; (3)如图3,在(2)的条件下,且的延长线与的延长线有交点,当点在线段的延长线上从左向右移动的过程中,直接写出与所有可能的数量关系. 二十五、解答题 25.如图,在中,是高,是角平分线,,. ()求、和的度数. ()若图形发生了变化,已知的两个角度数改为:当,,则__________. 当,时,则__________. 当,时,则__________. 当,时,则__________. ()若和的度数改为用字母和来表示,你能找到与和之间的关系吗?请直接写出你发现的结论. 【参考答案】 一、选择题 1.B 解析:B 【分析】 根据平方根的定义:如果(),那么a就叫做b的平方根,解答即可. 【详解】 解:∵ ∴“9的平方根”这句话用数学符号表示为:, 故选B. 【点睛】 本题考查了平方根的定义,是基础概念题,熟记概念是解题的关键. 2.B 【分析】 根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解. 【详解】 解:A、可以由一个“基本图案”旋转得到,故本选项错误; B、可以由一个“基本图案”平移得到,故把本选项正 解析:B 【分析】 根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解. 【详解】 解:A、可以由一个“基本图案”旋转得到,故本选项错误; B、可以由一个“基本图案”平移得到,故把本选项正确; C、是轴对称图形,不是基本图案的组合图形,故本选项错误; D、是轴对称图形,不是基本图案的组合图形,故本选项错误. 故选:B. 【点睛】 本题考查了生活中的平移现象,仔细观察各选项图形是解题的关键. 3.B 【分析】 根据各象限内点的坐标特征解答. 【详解】 解:点P(-5,4)位于第二象限. 故选:B. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.B 【分析】 根据平行线的性质对A、C进行判断;根据平行线的性质对B进行判断;根据无理数的定义和数轴上的点与实数一一对应对D进行判断. 【详解】 解:A、两直线平行,内错角相等,所以A选项为真命题; B、a,b,c是直线,若a⊥b,b⊥c,则a∥c,所以B选项为假命题; C、a,b,c是直线,若a∥b,b∥c,则a∥b,所以C选项为真命题; D、无限不循环小数是无理数,每一个无理数都可以用数轴上的一个点表示,所以D选项为真命题. 故选:B. 【点睛】 此题考查了平行线的性质和无理数及数轴表示实数,难度一般,认真理解判断即可. 5.B 【分析】 根据平行线的性质对①进行判断;根据对顶角的性质对②进行判断;根据余角与补角的定义对③进行判断;根据三角形外角性质对④进行判断. 【详解】 解:两条平行直线被第三条直线所截,内错角相等,所以①错误; 如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确; 一个角的余角一定小于这个角的补角,所以③正确; 三角形的外角大于任何一个与之不相邻的一个内角,所以④错误. 故选:B. 【点睛】 本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理. 6.B 【分析】 根据平方根,算术平方根,立方根的概念进行分析,从而作出判断. 【详解】 解:1的平方根是±1,故说法①错误; 5是25的算术平方根,故说法②正确; (-4)2的平方根是±4,故说法③错误; (-4)3的立方根是-4,故说法④正确; 0.1是0.01的一个平方根,故说法⑤错误; 综上,②④正确, 故选:B. 【点睛】 本题考查了算术平方根,平方根,立方根的概念,理解相关定义,注意符号是解题关键. 7.B 【分析】 根据两直线平行,内错角相等求出,再根据平角的定义求出,然后根据折叠的性质可得,进而即可得解. 【详解】 解:∵在矩形纸片中,,, , , ∵折叠, ∴, . 故选:B. 【点睛】 本题考查了平行线的性质以及折叠的性质,根据两直线平行,内错角相等求出是解题的关键,另外,根据折叠前后的两个角相等也很重要. 8.D 【分析】 由题意找到动点每移动六次一个循环的规律,根据此规律即可解答. 【详解】 解:由题意得,动点每移动六次为一个循环, 则移动23次为:, 则A23的横坐标为:, 纵坐标为:, 故A23的坐 解析:D 【分析】 由题意找到动点每移动六次一个循环的规律,根据此规律即可解答. 【详解】 解:由题意得,动点每移动六次为一个循环, 则移动23次为:, 则A23的横坐标为:, 纵坐标为:, 故A23的坐标为, 故选:D. 【点睛】 本题考查了点的坐标-规律探究,根基题意得出动点每移动六次为一个循环是解题的关键. 九、填空题 9.【分析】 根据平方与二次根式的非负性即可求解. 【详解】 依题意得2a+3=0.b-2=0, 解得a=-,b=2, ∴== 【点睛】 此题主要考查实数的性质,解题的关键是熟知实数的性质. 解析: 【分析】 根据平方与二次根式的非负性即可求解. 【详解】 依题意得2a+3=0.b-2=0, 解得a=-,b=2, ∴== 【点睛】 此题主要考查实数的性质,解题的关键是熟知实数的性质. 十、填空题 10.【分析】 关于y轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a,b的值即可解题. 【详解】 解:∵点M(2a-7,2)和N(-3﹣b,a+b)关于y轴对称, ∴, 解得:, 则=. 故 解析: 【分析】 关于y轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a,b的值即可解题. 【详解】 解:∵点M(2a-7,2)和N(-3﹣b,a+b)关于y轴对称, ∴, 解得:, 则=. 故答案为:. 【点睛】 本题考查关于y轴对称的点的特征、涉及解二元一次方程组,是基础考点,难度较易,掌握相关知识是解题关键. 十一、填空题 11.60 【分析】 由角平分线的定义可求出∠AOE=∠EOC=∠COB=60°,再根据对顶角相等即可求出∠AOD的度数. 【详解】 ∵OE平分∠AOC, ∴∠AOE=∠EOC, ∵OC平分∠BOE, ∴ 解析:60 【分析】 由角平分线的定义可求出∠AOE=∠EOC=∠COB=60°,再根据对顶角相等即可求出∠AOD的度数. 【详解】 ∵OE平分∠AOC, ∴∠AOE=∠EOC, ∵OC平分∠BOE, ∴∠EOC=∠COB ∴∠AOE=∠EOC=∠COB, ∵∠AOE+∠EOC+∠COB=180︒ ∴∠COB=60°, ∴∠AOD=∠COB=60°, 故答案为:60 【点睛】 本题主要考查了角平分线的应用以及对顶角相等的性质,熟练运用角平分线的定义是解题的关键. 十二、填空题 12.40 【分析】 根据a∥b,可以得到∠1=∠DAE,∠2=∠CAB,再根据∠DAC=90°,即可求解. 【详解】 解:如图所示 ∵a∥b ∴∠1=∠DAE,∠2=∠CAB ∵∠DAC=90° ∴∠D 解析:40 【分析】 根据a∥b,可以得到∠1=∠DAE,∠2=∠CAB,再根据∠DAC=90°,即可求解. 【详解】 解:如图所示 ∵a∥b ∴∠1=∠DAE,∠2=∠CAB ∵∠DAC=90° ∴∠DAE+∠CAB=180°-∠DAC=90° ∴∠1+∠2=90° ∴∠2=90°-∠1=40° 故答案为:40. 【点睛】 本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质. 十三、填空题 13.120 【分析】 由折叠的性质知:∠EBC′、∠BC′F都是直角,因此BE∥C′F,那么∠EFC′和∠BEF互补,欲求∠EFC′的度数,需先求出∠BEF的度数;根据折叠的性质知∠BEF=∠DEF,而 解析:120 【分析】 由折叠的性质知:∠EBC′、∠BC′F都是直角,因此BE∥C′F,那么∠EFC′和∠BEF互补,欲求∠EFC′的度数,需先求出∠BEF的度数;根据折叠的性质知∠BEF=∠DEF,而∠AEB的度数可在Rt△ABE中求得,由此可求出∠BEF的度数,即可得解. 【详解】 解:Rt△ABE中,∠ABE=30°, ∴∠AEB=60°; 由折叠的性质知:∠BEF=∠DEF; 而∠BED=180°-∠AEB=120°, ∴∠BEF=60°; 由折叠的性质知:∠EBC′=∠D=∠BC′F=∠C=90°, ∴BE∥C′F, ∴∠EFC′=180°-∠BEF=120°. 故答案为:120. 【点睛】 本题考查图形的翻折变换以及平行线的性质的运用,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变. 十四、填空题 14.. 【分析】 先根据题意求得、、、,发现规律即可求解. 【详解】 解:∵a1=3 ∴,,,, ∴该数列为每4个数为一周期循环, ∵ ∴a2020=. 故答案为:. 【点睛】 此题主要考查规律的探索, 解析:. 【分析】 先根据题意求得、、、,发现规律即可求解. 【详解】 解:∵a1=3 ∴,,,, ∴该数列为每4个数为一周期循环, ∵ ∴a2020=. 故答案为:. 【点睛】 此题主要考查规律的探索,解题的关键是根据题意发现规律. 十五、填空题 15.或. 【分析】 根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可. 【详解】 解:∵点到两坐标轴的距离相等, ∴, 或, 解得,或, 故答案为:或. 【点睛】 本题考查了点到坐标轴的距 解析:或. 【分析】 根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可. 【详解】 解:∵点到两坐标轴的距离相等, ∴, 或, 解得,或, 故答案为:或. 【点睛】 本题考查了点到坐标轴的距离,解题关键是明确到坐标轴的距离是坐标的绝对值. 十六、填空题 16.(8052,0). 【分析】 观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可. 【详解 解析:(8052,0). 【分析】 观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可. 【详解】 解:∵点A(﹣4,0),B(0,3), ∴OA=4,OB=3, ∴AB==5, ∴第(3)个三角形的直角顶点的坐标是; 观察图形不难发现,每3个三角形为一个循环组依次循环, ∴一次循环横坐标增加12, ∵2013÷3=671 ∴第(2013)个三角形是第671组的第三个直角三角形, 其直角顶点与第671组的第三个直角三角形顶点重合, ∴第(2013)个三角形的直角顶点的坐标是即. 故答案为:. 【点睛】 本题考查了坐标与图形变化-旋转,勾股定理的应用,观察图形,发现每3个三角形为一个循环组依次循环是解题的关键. 十七、解答题 17.(1)2;(2)6;(3) 或 【解析】 【分析】 (1)利用乘法分配律给括号中各项都乘以 ,把化为最简二次根式即可得到结果; (2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果; 解析:(1)2;(2)6;(3) 或 【解析】 【分析】 (1)利用乘法分配律给括号中各项都乘以 ,把化为最简二次根式即可得到结果; (2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果; (3)直接利用平方根的定义计算得出答案. 【详解】 解:(1) , ; (2) , , ; (3)∵ ∴ 解得:或. 故答案为:(1)2;(2)6;(3) 或 【点睛】 本题考查立方根以及平方根,实数的运算,熟练掌握运算法则是解题的关键. 十八、解答题 18.(1)0.2;(2);(3)5 【分析】 (1)直接利用立方根的性质计算得出答案; (2)直接将-3移项,合并再利用立方根的性质计算得出答案; (3)直接利用立方根的性质计算得出x-1的值,进而得出 解析:(1)0.2;(2);(3)5 【分析】 (1)直接利用立方根的性质计算得出答案; (2)直接将-3移项,合并再利用立方根的性质计算得出答案; (3)直接利用立方根的性质计算得出x-1的值,进而得出x的值. 【详解】 解:(1)x3=0.008, 则x=0.2; (2)x3-3= 则x3=3+ 故x3= 解得:x=; (3)(x-1)3=64 则x-1=4, 解得:x=5. 【点睛】 此题主要考查了立方根,正确把握立方根的定义是解题关键. 十九、解答题 19.同旁内角互补,两直线平行;∠DCE;两直线平行,同位角相等;DCE;内错角相等,两直线平行;两直线平行,内错角相等 【分析】 根据平行线的判定得出AB∥CD,根据平行线的性质得出∠B=∠DCE,求出 解析:同旁内角互补,两直线平行;∠DCE;两直线平行,同位角相等;DCE;内错角相等,两直线平行;两直线平行,内错角相等 【分析】 根据平行线的判定得出AB∥CD,根据平行线的性质得出∠B=∠DCE,求出∠DCE=∠D,根据平行线的判定得出AD∥BE,根据平行线的性质得出即可. 【详解】 证明:∵∠B+∠BCD=180°( 已知 ), ∴AB∥CD (同旁内角互补,两直线平行), ∴∠B=∠DCE(两直线平行,同位角相等), 又∵∠B=∠D(已知 ), ∴∠D=∠DCE(等量代换), ∴AD∥BE(内错角相等,两直线平行), ∴∠E=∠DFE(两直线平行,内错角相等). 故答案为:同旁内角互补,两直线平行;∠DCE;两直线平行,同位角相等;DCE;内错角相等,两直线平行;两直线平行,内错角相等. 【点睛】 本题主要考查平行线的判定和性质,掌握同旁内角互补,两直线平行;内错角相等,两直线平行;两直线平行,内错角相等是解题的关键. 二十、解答题 20.(1),,;(2)90°;(3)45° 【分析】 (1)根据图形和平面直角坐标系,可直接得出答案; (2)根据两直线平行,内错角相等可得,则∠; (3)根据角平分线的定义可得,过点作,然后根据平行 解析:(1),,;(2)90°;(3)45° 【分析】 (1)根据图形和平面直角坐标系,可直接得出答案; (2)根据两直线平行,内错角相等可得,则∠; (3)根据角平分线的定义可得,过点作,然后根据平行线的性质得出, . 【详解】 解:(1)依题意得:,,; (2)∵, ∴, ∴; (3)∵, ∴, ∵,分别平分,, ∴ , 过点作, 则,, ∴. 【点睛】 本题考查了坐标与图形的性质,平行线的性质,熟记以上性质,并求出A,B,C的坐标是解题的关键,(3)作出平行线是解题的关键. 二十一、解答题 21.同意; 【分析】 找出的整数部分与小数部分.然后再来求. 【详解】 解:同意小明的表示方法. 无理数的整数部分是, 即, 无理数的小数部分是, 即, , 【点睛】 本题主要考查了无理数的大小.解题 解析:同意; 【分析】 找出的整数部分与小数部分.然后再来求. 【详解】 解:同意小明的表示方法. 无理数的整数部分是, 即, 无理数的小数部分是, 即, , 【点睛】 本题主要考查了无理数的大小.解题关键是确定无理数的整数部分即可解决问题. 二十二、解答题 22.(1)正方形的面积为10,正方形的边长为;(2)见解析 【分析】 (1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长; (2)根据(1)的方法画 解析:(1)正方形的面积为10,正方形的边长为;(2)见解析 【分析】 (1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长; (2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论. 【详解】 解:(1)正方形的面积为4×4-4××3×1=10 则正方形的边长为; (2)如下图所示,正方形的面积为4×4-4××2×2=8,所以该正方形即为所求,如图建立数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点 ∴正方形的边长为 ∴弧与数轴的左边交点为,右边交点为,实数和在数轴上如图所示. 【点睛】 此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键. 二十三、解答题 23.(1)∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小没发生变化,∠FEQ=30°. 【分析】 (1)过E作EHAB,易得EHABCD,根据平行线的性质 解析:(1)∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小没发生变化,∠FEQ=30°. 【分析】 (1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB,易得FHABCD,根据平行线的性质可求解; (2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF−∠FND=180°,可求解∠BMF=60°,进而可求解; (3)根据平行线的性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解. 【详解】 解:(1)过E作EHAB,如图1, ∴∠BME=∠MEH, ∵ABCD, ∴HECD, ∴∠END=∠HEN, ∴∠MEN=∠MEH+∠HEN=∠BME+∠END, 即∠BME=∠MEN−∠END. 如图2,过F作FHAB, ∴∠BMF=∠MFK, ∵ABCD, ∴FHCD, ∴∠FND=∠KFN, ∴∠MFN=∠MFK−∠KFN=∠BMF−∠FND, 即:∠BMF=∠MFN+∠FND. 故答案为∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND. (2)由(1)得∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND. ∵NE平分∠FND,MB平分∠FME, ∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END, ∵2∠MEN+∠MFN=180°, ∴2(∠BME+∠END)+∠BMF−∠FND=180°, ∴2∠BME+2∠END+∠BMF−∠FND=180°, 即2∠BMF+∠FND+∠BMF−∠FND=180°, 解得∠BMF=60°, ∴∠FME=2∠BMF=120°; (3)∠FEQ的大小没发生变化,∠FEQ=30°. 由(1)知:∠MEN=∠BME+∠END, ∵EF平分∠MEN,NP平分∠END, ∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END, ∵EQNP, ∴∠NEQ=∠ENP, ∴∠FEQ=∠FEN−∠NEQ=(∠BME+∠END)−∠END=∠BME, ∵∠BME=60°, ∴∠FEQ=×60°=30°. 【点睛】 本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键. 二十四、解答题 24.(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α 【分析】 (1)过M作MN∥AB,由平行线的性质即可求得∠M的值. (2)延长BA,DC交于E, 解析:(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α 【分析】 (1)过M作MN∥AB,由平行线的性质即可求得∠M的值. (2)延长BA,DC交于E,应用四边形的内角和定理与平角的定义即可解决问题. (3)分两种情形分别求解即可; 【详解】 解:(1)过M作MN∥AB, ∵AB∥CD, ∴AB∥MN∥CD, ∴∠1=∠A,∠2=∠C, ∴∠AMC=∠1+∠2=∠A+∠C=50°; 故答案为:50°; (2)∠A+∠C=30°+α, 延长BA,DC交于E, ∵∠B+∠D=150°, ∴∠E=30°, ∵∠BAM+∠DCM=360°-(∠EAM+∠ECM)=360°-(360°-∠E-∠M)=30°+α; 即∠A+∠C=30°+α; (3)①如下图所示: 延长BA、DC使之相交于点E,延长MC与BA的延长线相交于点F, ∵∠B+∠D=150°,∠AMC=α,∴∠E=30° 由三角形的内外角之间的关系得: ∠1=30°+∠2 ∠2=∠3+α ∴∠1=30°+∠3+α ∴∠1-∠3=30°+α 即:∠A-∠C=30°+α. ②如图所示,210-∠A=(180°-∠DCM)+α,即∠A-∠DCM=30°-α. 综上所述,∠A-∠DCM=30°+α或30°-α. 【点睛】 本题考查了平行线的性质.解答该题时,通过作辅助线准确作出辅助线l∥AB,利用平行线的性质(两直线平行内错角相等)将所求的角∠M与已知角∠A、∠C的数量关系联系起来,从而求得∠M的度数. 二十五、解答题 25.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,. 【分析】 (1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数; 解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,. 【分析】 (1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数; (2)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,则前三问利用即可得出答案,第4问利用即可得出答案; (3)按照(2)的方法,将相应的数换成字母即可得出答案. 【详解】 (1)∵,, ∴ . ∵平分, ∴. ∵是高, , , , . (2)当,时, ∵,, ∴. ∵平分, ∴. ∵是高, , , ; 当,时, ∵,, ∴ . ∵平分, ∴. ∵是高, , , ; 当,时, ∵,, ∴. ∵平分, ∴. ∵是高, , , ; 当,时, ∵,, ∴. ∵平分, ∴. ∵是高, , , . (3)当 时,即时, ∵,, ∴ . ∵平分, ∴. ∵是高, , , ; 当 时,即时, ∵,, ∴ . ∵平分, ∴. ∵是高, , , ; 综上所述,当时,;当时,. 【点睛】 本题主要考查三角形内角和定理和三角形的角平分线,高,掌握三角形内角和定理和直角三角形两锐角互余是解题的关键.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服