资源描述
初二上册压轴题强化数学综合试题附解析(一)
1、如图①,在等边△ABC中,点D、E分别是AB、AC上的点,BD=AE,BE与CD交于点O.
(1)填空:∠BOC= 度;
(2)如图②,以CO为边作等边△OCF,AF与BO相等吗?并说明理由;
(3)如图③,若点G是BC的中点,连接AO、GO,判断AO与GO有什么数量关系?并说明理由.
2、在平面直角坐标系中,点A在x轴的负半轴上,点B在y轴的正半轴上,点A与点C关于y轴对称.
(1)如图1,OA=OB,AF平分∠BAC交BC于F,BE⊥AF交AC于E,请直接写出EF与EC的数量关系为 ;
(2)如图2,AF平分∠BAC交BC于F,若AF=2OB,求∠ABC的度数;
(3)如图3,OA=OB,点G在BO的垂直平分线上,作∠GOH=45°交BA的延长线于H,连接GH,试探究OG与GH的数量和位置关系.
3、已知:在平面直角坐标系中,A为x轴负半轴上的点,B为y轴负半轴上的点.
(1)如图1,以A点为顶点、AB为腰在第三象限作等腰,若,,求C点的坐标;
(2)如图2,若点A的坐标为,点B的坐标为,点D的纵坐标为n,以B为顶点,BA为腰作等腰.当B点沿y轴负半轴向下运动且其他条件都不变时,整式的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理出;
(3)如图3,若,于点F,以OB为边作等边,连接AM交OF于点N,若,,请直接写出线段AM的长.
4、问题引入:
(1)如图1,在中,点O是和平分线的交点,若,则______(用表示):如图2,,,,则______(用表示);
拓展研究:
(2)如图3,,,,猜想度数(用表示),并说明理由;
(3)BO、CO分别是的外角、的n等分线,它们交于点O,,,,请猜想______(直接写出答案).
5、已知,A(0,a),B(b,0),点为x轴正半轴上一个动点,AC=CD,∠ACD=90°.
(1)已知a,b满足等式|a +b|+b2+4b=-3、
①求A点和B点的坐标;
②如图1,连BD交y轴于点H,求点H的坐标;
(2)如图2,已知a+b=0,OC>OB,作点B关于y轴的对称点E,连DE,点F为DE的中点,连OF和CF,请补全图形,探究OF与CF有什么数量和位置关系,并证明你的结论.
6、阅读下列材料,完成相应任务.
数学活动课上,老师提出了如下问题:
如图1,已知中,是边上的中线.
求证:.
智慧小组的证法如下:
证明:如图2,延长至,使,
∵是边上的中线∴
在和中
∴(依据一)∴
在中,(依据二)
∴.
任务一:上述证明过程中的“依据1”和“依据2”分别是指:
依据1:______________________________________________;
依据2:______________________________________________.
归纳总结:上述方法是通过延长中线,使,构造了一对全等三角形,将,,转化到一个三角形中,进而解决问题,这种方法叫做“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.
任务二:如图3,,,则的取值范围是_____________;
任务三:如图4,在图3的基础上,分别以和为边作等腰直角三角形,在中,,;中,,.连接.试探究与的数量关系,并说明理由.
7、操作发现:如图1,D是等边△ABC边BA上的一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边△DCF,连接AF,易证AF=BD(不需要证明);
类比猜想:①如图2,当动点D运动至等边△ABC边BA的延长线上时,其它作法与图1相同,猜想AF与BD在图1中的结论是否仍然成立。
深入探究:②如图3,当动点D在等边△ABC边BA上的一动点(点D与点B不重合),连接DC,以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′,连接AF,BF′你能发现AF,BF′与AB有何数量关系,并证明你发现的结论。
③如图4,当动点D运动至等边△ABC边BA的延长线上时,其它作法与图3相同,猜想AF,BF′与AB在上题②中的结论是否仍然成立,若不成立,请给出你的结论并证明。
8、已知:AD为△ABC的中线,分别以AB和AC为一边在△ABC的外部作等腰三角形ABE和等腰三角形ACF,且AE=AB,AF=AC,连接EF,∠EAF+∠BAC=180°.
(1)如图1,若∠ABE=65°,∠ACF=75°,求∠BAC的度数.
(2)如图1,求证:EF=2AD.
(3)如图2,设EF交AB于点G,交AC于点R,FC与EB交于点M,若点G为EF中点,且∠BAE=60°,请探究∠GAF和∠CAF的数量关系,并证明你的结论.
【参考答案】
1、(1)120;(2)相等,理由见解析;(3)AO=2OG.理由见解析
【分析】(1)证明△EAB≌△DBC(SAS),可得结论.
(2)结论:AF=BO,证明△FCA≌△OCB(SAS),可得结论.
【解析】(1)120;(2)相等,理由见解析;(3)AO=2OG.理由见解析
【分析】(1)证明△EAB≌△DBC(SAS),可得结论.
(2)结论:AF=BO,证明△FCA≌△OCB(SAS),可得结论.
(3)证明△AFO≌△OBR(SAS),推出OA=OR,可得结论.
【详解】解:(1)如图①中,
∵△ABC是等边三角形,
∴AB=BC,∠A=∠CBD=60°,
在△EAB和△DBC中,
,
∴△EAB≌△DBC(SAS),
∴∠ABE=∠BCD,
∴∠BOD=∠BCD+∠CBE=∠ABE+∠CBE=∠CBA=60°,
∴∠BOC=180°-60°=120°.
故答案为:119、
(2)相等.
理由:如图②中,
∵△FCO,△ACB都是等边三角形,
∴CF=CO,CA=CB,∠FCO=∠ACB=60°,
∴∠FCA=∠OCB,
在△FCA和△OCB中,
,
∴△FCA≌△OCB(SAS),
∴AF=BO.
(3)如图③中,结论:AO=2OG.
理由:延长OG到R,使得GR=GO,连接CR,BR.
在△CGO和△BGR中,
,
∴△CGO≌△BGR(SAS),
∴CO=BR=OF,∠GCO=∠GBR,AF=BO,
∴CO∥BR,
∵△FCA≌△OCB,
∴∠AFC=∠BOC=120°,
∵∠CFO=∠COF=60°,
∴∠AFO=∠COF=60°,
∴AF∥CO,
∴AF∥BR,
∴∠AFO=∠RBO,
在△AFO和△OBR中,
,
∴△AFO≌△OBR(SAS),
∴OA=OR,
∵OR=2OG,
∴OA=2OG.
【点睛】本题属于三角形综合题,考查了等边三角形的判定和性质,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
2、(1)EF=EC
(2)72°
(3)GH=GO,GH⊥GO
【分析】(1)如图1中,设AF交BE于点J.首先证明AB=AE,再证明∠AEF=∠ABF=90°,可得结论;
(2)如图2中,取CF的中
【解析】(1)EF=EC
(2)72°
(3)GH=GO,GH⊥GO
【分析】(1)如图1中,设AF交BE于点J.首先证明AB=AE,再证明∠AEF=∠ABF=90°,可得结论;
(2)如图2中,取CF的中点T,连接OT.由OA=OC,BO⊥AC,推出BA=BC,推出∠BAC=∠BCA,∠ABO=∠CBO,设∠BAC=∠BCA=2α,利用三角形内角和定理,构建方程求解即可;
(3)结论:OG=GH,OG⊥GH.如图3中,连接GB,在BA上取一点H′,使得GB=GH′,连接OH′,设AB交DG于点W,交OG于点K,连接OW.证明∠GOH′=GOH=45°,推出点H与点H′重合,可得结论.
(1)解:(1)结论:EF=EC.理由:如图1中,设AF交BE于点J.∵AF平分∠BAC,∴∠BAF=∠CAF,∵BE⊥AF,∴∠BAF+∠ABE=90°,∠CAF+∠AEB=90°,∴∠ABE=∠AEB,∴AB=AE,∵A,C关于y轴对称,∴OA=OC,∵OA=OB,∴OA=OB=OC,∴∠OAB=∠OBA=45°,∠OCB=∠OBC=45°,∴∠ABC=90°,在△ABF和△AEF中,,∴△ABF≌△AEF(SAS),∴∠AEF=∠ABF=90°,∴∠CEF=90°,∴∠ECF=∠EFC=45°,∴EF=EC;
(2)解:如图2中,取CF的中点T,连接OT.∵AO=OC,FT=TC,∴OT∥AF,OT=AF,∵AF=2OB,∴OB=OT,∴∠OBT=∠OTB,∵OA=OC,BO⊥AC,∴BA=BC,∴∠BAC=∠BCA,∠ABO=∠CBO,设∠BAC=∠BCA=2α,∵AF平分∠BAC,∴∠BAF=∠CAF=α,∵OT∥AF,∴∠TOC=∠CAF=α,∴∠OBT=∠OTB=∠TOC+∠TCO=3α,∵∠OBC+∠OCB=90°,∴5α=90°,∴α=18°,∴∠OBC=36°,∴∠ABC=2∠OBC=72°;
(3)解:结论:OG=GH,OG⊥GH.理由:如图3中,连接GB,在BA上取一点H′,使得GB=GH′,连接OH′,设AB交DG于点W,交OG于点K,连接OW.设∠OGB=m,∠OGH′=n,∵GD垂直平分线段OB,∴GB=GO,∠DGB=∠DGO=m,∵GB=GO=GH′,∴∠GH′O=(180°-n)=90°-n,∠GH′B=(180°-m-n)=90°-m-n,∴∠KH′O=∠GH′O-∠GH′B=90°-n-(90°-m-n)=m,∴∠KH′O=∠KGW,∵∠GKW=∠H′KO,∴∠H′OK=∠GWK,∵DG∥OA,∴∠GWK=∠OAB=45°,∴∠COH′=45°,∵∠COH=45°,∴∠COH=∠COH′,∴点H与点H′重合,∴OG=GH,∴∠GHO=∠GOH=45°,∴∠OGH=90°,∴GH=GO,GH⊥GO.
【点睛】本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,等腰三角形的性质等知识,第三个问题比较难,采用了同一法解决问题.
3、(1)
(2)整式的值不发生变化.其值为
(3)
【分析】(1)过点作于点,可以证明,由,,再由条件就可以求出的坐标;
(2)过点作于点,可以证明,则有为定值,从而可以得出结论的值不变为;
(3)在
【解析】(1)
(2)整式的值不发生变化.其值为
(3)
【分析】(1)过点作于点,可以证明,由,,再由条件就可以求出的坐标;
(2)过点作于点,可以证明,则有为定值,从而可以得出结论的值不变为;
(3)在上截取,连接,证明,由全等三角形的性质得出.由等腰三角形的性质可得出结论.
(1)
解:如图1,过点作于点,
,
等腰直角三角形,
,,
.
,
,.
,,
,,
,
;
(2)
解:整式的值不会变化.
理由如下:
如图2,过点作于点,
,
等腰直角三角形,
,,
,
,
,
,
,
,
,
当点沿轴负半轴向下运动时,
,
整式的值不变,为;
(3)
.
证明:如图3,在上截取,连接,
是等边三角形,
,,
为等腰直角三角形,
,,
,
,
,
,,
,
,
.
,
,,
,
,
,
,
,
,
即.
【点睛】本题是三角形综合题,考查了等腰直角三角形的性质,等边三角形的性质,全等三角形的判定与性质,正确的做出辅助线并证明三角形全等是解决问题的关键.
4、(1),
(2),理由见解析
(3)
【分析】(1)由角平分线的定义得,则,再利用三角形内角和定理可得答案;
(2)根据三角形内角和定理得,而,代入化简即可;
(3)由(2)同理可得答案.
(1)
【解析】(1),
(2),理由见解析
(3)
【分析】(1)由角平分线的定义得,则,再利用三角形内角和定理可得答案;
(2)根据三角形内角和定理得,而,代入化简即可;
(3)由(2)同理可得答案.
(1)
解:点是和平分线的交点,
,
,
在中,
,
,
,
,
故答案为:;
在中,,
,
,
,
,
故答案为:;
(2)
解:,理由如下:
,,,
,
,
,
,
;
(3)
解:在中,,
,
,
,
,
故答案为:.
【点睛】本题主要考查了三角形内角和定理,角平分线的定义,解题的关键是采取类比的方法,同时渗透了整体思想.
5、(1)①A(0,2),B(-2,0);②H(0,-2);(2)CF⊥OF,CF=OF,证明见解析.
【分析】(1)①利用绝对值、完全平方的非负性的应用,求出a、b的值,即可得到答案;
②过C作y轴垂
【解析】(1)①A(0,2),B(-2,0);②H(0,-2);(2)CF⊥OF,CF=OF,证明见解析.
【分析】(1)①利用绝对值、完全平方的非负性的应用,求出a、b的值,即可得到答案;
②过C作y轴垂线交BA的延长线于E,然后证明△CEA≌△CBD,得到OB=OH,即可得到答案;
(2)由题意,先证明△DFG≌△EFO,然后证明△DCG≌△ACO,得到△OCG是等腰直角三角形,再根据三线合一定理,即可得到结论成立.
【详解】解:(1)∵,
∴,
∴,
∴,,
∴,
∴,
∴A(0,2),B(2,0);
②过C作x轴垂线交BA的延长线于E,
∵OA=OB=2,∠AOB=90°,
∴△AOB是等腰直角三角形,
∴∠ABO=45°,
∵EC⊥BC,
∴△BCE是等腰直角三角形,
∴BC=EC,∠BCE=90°=∠ACD,
∴∠ACE=∠DCB,
∵AC=DC,
∴△CEA≌△CBD,
∴∠CBD=∠E=45°,
∴OH=OB=2,
∴H(0,2);
(2)补全图形,如图:
∵点B、E关于y轴对称,
∴OB=OE,
∵a+b=0,即
∴OA=OB=OE
延长OF至G使FG=OF,连DG,CG,
∵OF=FG,∠OFE=∠DFG,EF=DF
∴△DFG≌△EFO
∴DG=OE=OA,∠DGF=∠EOF
∴DG∥OE
∴∠CDG=∠DCO;
∵∠ACO+∠CAO=∠ACO+∠DCO=90°,
∴∠DCO=∠CAO;
∴∠CDG=∠DCO=∠CAO;
∵CD=AC,OA=DG
∴△DCG≌△ACO
∴OC=GC,∠DCG=∠ACO
∴∠OCG=90°,
∴∠COF=45°,
∴△OCG是等腰直角三角形,
由三线合一定理得CF⊥OF
∵∠OCF=∠COF=45°,
∴CF=OF;
【点睛】本题考查了等腰三角形的判定和性质,全等三角形的判定和性质,轴对称的性质,非负性的应用,解题的关键是熟练掌握所学的知识,正确的作出辅助线进行解题.
6、任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三:EF=2AD,见解析
【分析】任务一:依据1:根据全等的判定
【解析】任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三:EF=2AD,见解析
【分析】任务一:依据1:根据全等的判定方法判断即可;
依据2:根据三角形三边关系判断;
任务二:可根据任务一的方法直接证明即可;
任务三:根据任务一的方法,延长中线构造全等三角形证明线段关系即可.
【详解】解:任务一:
依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);
依据2:三角形两边的和大于第三边.
任务二:
任务三:EF=2AD.理由如下:
如图延长AD至G,使DG=AD,
∵AD是BC边上的中线
∴BD=CD
在△ABD和△CGD中
∴△ABD≌△CGD
∴AB=CG,∠ABD=∠GCD
又∵AB=AE
∴AE=CG
在△ABC中,∠ABC+∠BAC+∠ACB=180°,
∴∠GCD+∠BAC+∠ACB=180°
又∵∠BAE=90°,∠CAF=90°
∴∠EAF+∠BAC=360°-(∠BAE+∠CAF)=180°
∴∠EAF=∠GCD
在△EAF和△GCA中
∴△EAF≌△GCA
∴EF=AG
∴EF=2AD.
【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,倍长中线法,构造全等三角形是解本题的关键.
7、①成立,证明见详解;②AF+BF′=AB,证明见详解;③不成立,AF=AB+BF′,证明见详解.
【分析】类比猜想:①通过证明△BCD≌△ACF,即可证明AF=BD;
深入探究:②AF+BF′=AB
【解析】①成立,证明见详解;②AF+BF′=AB,证明见详解;③不成立,AF=AB+BF′,证明见详解.
【分析】类比猜想:①通过证明△BCD≌△ACF,即可证明AF=BD;
深入探究:②AF+BF′=AB,利用全等三角形△BCD≌△ACF(SAS)的对应边BD=AF;同理△BCF′≌△ACD(SAS),则BF′=AD,所以AF+BF′=AB;
③结论不成立.新的结论是AF=AB+BF′;通过证明△BCF′≌△ACD(SAS),则BF′=AD(全等三角形的对应边相等);再结合(2)中的结论即可证得AF=AB+BF′.
【详解】解:类比猜想:①如图2中,
∵△ABC是等边三角形(已知),
∴BC=AC,∠BCA=60°(等边三角形的性质);
同理知,DC=CF,∠DCF=60°;
∴∠BCA+∠DCA=∠DCF+∠DCA,即∠BCD=∠ACF;
在△BCD和△ACF中,
∴△BCD≌△ACF(SAS),
∴BD=AF(全等三角形的对应边相等);
深入探究:②如图示
AF+BF′=AB;
证明如下:由①条件可知:∠BCA-∠DCA=∠DCF-∠DCA,即∠BCD=∠ACF,
∴同理可证△BCD≌△ACF(SAS),则BD=AF;
同理△BCF′≌△ACD(SAS),则BF′=AD,
∴AF+BF′=BD+AD=AB;
③结论不成立.新的结论是AF=AB+BF′;
如图示:
证明如下:
∵等边△DCF和等边△DCF′,由①同理可知:
在△BCF′和△ACD中,
∴△BCF′≌△ACD(SAS),
∴BF′=AD(全等三角形的对应边相等);
又由②知,AF=BD;
∴AF=BD=AB+AD=AB+BF′,即AF=AB+BF′.
【点睛】本题属于三角形综合题,考查了等边三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.
8、(1)∠BAC=50°
(2)见解析
(3)∠GAF﹣∠CAF=60°,理由见解析
【分析】(1)利用三角形的内角和定理求出∠EAB,∠CAF,再根据∠EAF+∠BAC=180°构建方程即可解决问题
【解析】(1)∠BAC=50°
(2)见解析
(3)∠GAF﹣∠CAF=60°,理由见解析
【分析】(1)利用三角形的内角和定理求出∠EAB,∠CAF,再根据∠EAF+∠BAC=180°构建方程即可解决问题;
(2)延长AD至H,使DH=AD,连接BH,想办法证明△ABH≌△EAF即可解决问题;
(3)结论:∠GAF﹣∠CAF=60°.想办法证明△ACD≌△FAG,推出∠ACD=∠FAG,再证明∠BCF=150°即可.
(1)
解:∵AE=AB,
∴∠AEB=∠ABE=65°,
∴∠EAB=50°,
∵AC=AF,
∴∠ACF=∠AFC=75°,
∴∠CAF=30°,
∵∠EAF+∠BAC=180°,
∴∠EAB+2∠ABC+∠FAC=180°,
∴50°+2∠BAC+30°=180°,
∴∠BAC=50°.
(2)
证明:证明:如图,延长AD至点H,使DH=AD,连接BH
∵AD是△ABC的中线,
∴BD=DC,
又∵DH=AD,∠BDH=∠ADC
∴△ADC≌△HDB(SAS),
∴BH=AC,∠BHD=∠DAC,
∴BH=AF,
∵∠BHD=∠DAC,
∴BH∥AC,
∴∠BAC+∠ABH=180°,
又∵∠EAF+∠BAC=180°,
∴∠ABH=∠EAF,
又∵AB=AE,BH=AF,
∴△AEF≌△BAH(SAS),
∴EF=AH=2AD,
∴EF=2AD;
(3)
结论:∠GAF﹣∠CAF=60°.
理由:由(2)得,AD=EF,又点G为EF中点,
∴EG=AD,
由(2)△AEF≌△BAH,
∴∠AEG=∠BAD,
在△EAG和△ABD中,
,
∴△EAG≌△ABD,
∴∠EAG=∠ABC=60°,AG=BD,
∴△AEB是等边三角形,AG=CD,
∴∠ABE=60°,
∴∠CBM=60°,
在△ACD和△FAG中,
,
∴△ACD≌△FAG,
∴∠ACD=∠FAG,
∵AC=AF,
∴∠ACF=∠AFC,
在四边形ABCF中,∠ABC+∠BCF+∠CFA+∠BAF=360°,
∴60°+2∠BCF=360°,
∴∠BCF=150°,
∴∠BCA+∠ACF=150°,
∴∠GAF+(180°﹣∠CAF)=150°,
∴∠GAF﹣∠CAF=60°.
【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
展开阅读全文