资源描述
人教版七年级下册数学期末复习题
一、选择题
1.如图,∠1和∠2是同位角的是( )
A. B. C. D.
2.下列各组图形可以通过平移互相得到的是( )
A. B.
C. D.
3.若点在第二象限,则点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.在以下三个命题中,正确的命题有( )
①a,b,c是三条不同的直线,若a与b相交,b与c相交,则a与c相交
②a,b,c是三条不同的直线,若a∥b,b∥c,则a∥c
③若∠α与∠β互补,∠β与∠γ互补,则∠a与∠γ互补
A.② B.①② C.②③ D.①②③
5.若的两边与的两边分别平行,且,那么的度数为( )
A. B. C.或 D.或
6.有下列说法:(1)-6是36的一个平方根;(2)16的平方根是4;(3);(4)是无理数;(5)当时,一定有是正数,其中正确的说法有( )
A.1个 B.2个 C.3个 D.4个
7.如图,AB∥CD,直线EF分别交AB、CD于点E、F,FH平分∠EFD,若∠1=110°,则∠2的度数为( )
A.45° B.40° C.55° D.35°
8.如图所示,在平面直角坐标系中,有若干个整数点,其排列顺序按图中箭头方向排列,如,,,,,根据这个规律探索可得,第2021个点的坐标为( )
A. B. C. D.
九、填空题
9.若则 ________.
十、填空题
10.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则(m+n)2020的值是_____.
十一、填空题
11.如图,BD、CE为△ABC的两条角平分线,则图中∠1、∠2、∠A之间的关系为___________.
十二、填空题
12.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=54º时,∠1=______.
十三、填空题
13.如图,折叠三角形纸片ABC,使点B与点C重合,折痕为DE;展平纸片,连接AD.若AB=6cm,AC=4cm,则△ABD与△ACD的周长之差为____________.
十四、填空题
14.现定义一种新运算:对任意有理数a、b,都有a⊗b=a2﹣b,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.
十五、填空题
15.已知点A(0,0),|AB|=5,点B和点A在同一坐标轴上,那么点B的坐标是________.
十六、填空题
16.在平面直角坐标系中,对于点我们把叫做点P的伴随点,已知的伴随点为,点的伴随点为,点的伴随点为,这样依次得到,若点的坐标为,则点的坐标为_______
十七、解答题
17.计算:(1)|2−|++2;(2)已知(x–2)2=16,求x的值.
十八、解答题
18.已知,,求下列各式的值
;
十九、解答题
19.如图所示,已知∠1+∠2=180°,∠B=∠3,请你判断DE和BC平行吗?说明理由.(请根据下面的解答过程,在横线上补全过程和理由)
解:DE∥BC.理由如下:
∵∠1+∠4=180°(平角的定义),∠1+∠2=180°( ),
∴∠2=∠4( ).
∴ ∥ ( ).
∴∠3= ( ).
∵∠3=∠B( ),
∴ = ( ).
∴DE∥BC( ).
二十、解答题
20.已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3).请回答如下问题:
(1)在坐标系内描出点A、B、C的位置;
(2)求出以A、B、C三点为顶点的三角形的面积;
(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10,若存在,请直接写出点P的坐标;若不存在,请说明理由.
二十一、解答题
21.阅读下面的文字,解答问题:是一个无理数,而无理数是无限不循环小数,因此的小数部分无法全部写出来,但是我们可以想办法把它表示出来.因为即,所以的整数部分为,将减去其整数部分后,得到的差就是小数部分,于是的小数部分为
(1)求出的整数部分和小数部分;
(2)求出的整数部分和小数部分;
(3)如果的整数部分是,小数部分是,求出的值.
二十二、解答题
22.如图,这是由8个同样大小的立方体组成的魔方,体积为64.
(1)求出这个魔方的棱长;
(2)图中阴影部分是一个正方形ABCD,求出阴影部分的边长.
二十三、解答题
23.如图①,将一张长方形纸片沿对折,使落在的位置;
(1)若的度数为,试求的度数(用含的代数式表示);
(2)如图②,再将纸片沿对折,使得落在的位置.
①若,的度数为,试求的度数(用含的代数式表示);
②若,的度数比的度数大,试计算的度数.
二十四、解答题
24.如图1,由线段组成的图形像英文字母,称为“形”.
(1)如图1,形中,若,则______;
(2)如图2,连接形中两点,若,试探求与的数量关系,并说明理由;
(3)如图3,在(2)的条件下,且的延长线与的延长线有交点,当点在线段的延长线上从左向右移动的过程中,直接写出与所有可能的数量关系.
二十五、解答题
25.(1)如图1所示,△ABC中,∠ACB的角平分线CF与∠EAC的角平分线AD的反向延长线交于点F;
①若∠B=90°则∠F= ;
②若∠B=a,求∠F的度数(用a表示);
(2)如图2所示,若点G是CB延长线上任意一动点,连接AG,∠AGB与∠GAB的角平分线交于点H,随着点G的运动,∠F+∠H的值是否变化?若变化,请说明理由;若不变,请求出其值.
【参考答案】
一、选择题
1.A
解析:A
【分析】
根据同位角的定义,逐一判断选项,即可.
【详解】
解:A. ∠1和∠2是同位角,故该选项符合题意;
B. ∠1和∠2不是同位角,故该选项不符合题意;
C. ∠1和∠2不是同位角,故该选项不符合题意;
D. ∠1和∠2不是同位角,故该选项不符合题意,
故选 A.
【点睛】
本题主要考查同位角的定义,掌握“两条直角被第三条直线所截,在两条直线的同侧,在第三条直线的同旁的两个角,叫做同位角”,是解题的关键.
2.C
【分析】
根据平移不改变图形的形状和大小,进而得出答案.
【详解】
解:观察图形可知选项C中的图案通过平移后可以得到.
故选:C.
【点睛】
本题考查了图形的平移,正确掌握平移的性质是解题关键.
解析:C
【分析】
根据平移不改变图形的形状和大小,进而得出答案.
【详解】
解:观察图形可知选项C中的图案通过平移后可以得到.
故选:C.
【点睛】
本题考查了图形的平移,正确掌握平移的性质是解题关键.
3.A
【分析】
首先根据第二象限内点的坐标符号可得到0<a<1,然后分析出1-a>0,进而可得点B所在象限.
【详解】
解:∵点A(a-1,a)在第二象限,
∴a-1<0,a>0,
∴0<a<1,
∴1-a>0,
∴点B(a,1-a)在第一象限,
故选A.
【点睛】
此题主要考查了点的坐标,关键是掌握第一象限内点的坐标符号(+,+),第二象限内点的坐标符号(-,+),第三象限内点的坐标符号(-,-),第四象限内点的坐标符号(+,-).
4.A
【分析】
根据直线与直线的位置关系、平行线的判定定理和同角的补角相等逐一判断即可.
【详解】
解:①a,b,c是三条不同的直线,若a与b相交,b与c相交,则a与c不一定相交,如下图所示,故①错误;
②a,b,c是三条不同的直线,若a∥b,b∥c,则a∥c,故②正确;
③若∠α与∠β互补,∠β与∠γ互补,则∠a与∠γ相等,故③错误
综上:正确的命题是②.
故选A.
【点睛】
此题考查的是直线的位置关系的判断和补角的性质,掌握直线与直线的位置关系、平行线的判定定理和同角的补角相等是解决此题的关键.
5.A
【分析】
根据当两角的两边分别平行时,两角的关系可能相等也可能互补,即可得出答案.
【详解】
解:当∠B的两边与∠A的两边如图一所示时,则∠B=∠A,
又∵∠B=∠A+20°,
∴∠A+20°=∠A,
∵此方程无解,
∴此种情况不符合题意,舍去;
当∠B的两边与∠A的两边如图二所示时,则∠A+∠B=180°;
又∵∠B=∠A+20°,
∴∠A+20°+∠A=180°,
解得:∠A=80°;
综上所述,的度数为80°,
故选:A.
【点睛】
本题考查了平行线的性质,本题的解题关键是明确题意,画出相应图形,然后分类讨论角度关系即可得出答案.
6.B
【分析】
根据平方根与立方根的定义与性质逐个判断即可.
【详解】
(1)是36的一个平方根,则此说法正确;
(2)16的平方根是,则此说法错误;
(3),则此说法正确;
(4),4是有理数,则此说法错误;
(5)当时,无意义,则此说法错误;
综上,正确的说法有2个,
故选:B.
【点睛】
本题考查了平方根与立方根,熟练掌握平方根与立方根的定义与性质是解题关键.
7.D
【分析】
根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补求出∠DFE,然后根据角平分线的定义求出∠DFH,再根据两直线平行,内错角相等解答.
【详解】
解:∵∠1=110°,
∴∠3=∠1=110°,
∵AB∥CD,
∴∠DFE=180°-∠3=180°-110°=70°,
∵HF平分∠EFD,
∴∠DFH=∠DFE=×70°=35°,
∵AB∥CD,
∴∠2=∠DFH=35°.
故选:D.
【点睛】
本题考查了平行线的性质,角平分线的定义,对顶角相等的性质,是基础题,熟记各性质并准确识图是解题的关键.
8.A
【分析】
通过观察可以发现每列的数的个数是有规律的,分别有1,2,3,4…,n个,而且奇数列点的顺序是由上到下,偶数列点的顺序由下到上,按这个规律即可求出第2021个点的坐标.
【详解】
解:将
解析:A
【分析】
通过观察可以发现每列的数的个数是有规律的,分别有1,2,3,4…,n个,而且奇数列点的顺序是由上到下,偶数列点的顺序由下到上,按这个规律即可求出第2021个点的坐标.
【详解】
解:将点(1,0)作为第1列,
将横坐标为2的点即点(2,0)和点(2,1)作为第2列,
将横坐标为3的点作为第3列,依次类推……;
则第n列的点的横坐标为n,令前n列一共有的点的个数为,
当时,,
则第2021个点在64列自下向上第4个数,则该点坐标为.
故选A.
【点睛】
本题综合考查了平面直角坐标系中的点的坐标规律,观察发现点的分布规律,即每一列点的变化规律以及运动方向或顺序等以及数形结合思想的运用成为解答本题的关键.
九、填空题
9.【分析】
根据平方与二次根式的非负性即可求解.
【详解】
依题意得2a+3=0.b-2=0,
解得a=-,b=2,
∴==
【点睛】
此题主要考查实数的性质,解题的关键是熟知实数的性质.
解析:
【分析】
根据平方与二次根式的非负性即可求解.
【详解】
依题意得2a+3=0.b-2=0,
解得a=-,b=2,
∴==
【点睛】
此题主要考查实数的性质,解题的关键是熟知实数的性质.
十、填空题
10.1
【分析】
直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.
【详解】
解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称,
∴1+m=3,1-n=2,
∴m=
解析:1
【分析】
直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.
【详解】
解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称,
∴1+m=3,1-n=2,
∴m=2,n=-1,
∴(m+n)2020=(2-1)2020=1;
故答案为:1.
【点睛】
此题主要考查了关于y轴对称点的性质,正确掌握点的坐标特点是解题关键.
十一、填空题
11.∠1+∠2-∠A=90°
【分析】
先根据三角形的外角等于与它不相邻的两个内角的和,写出∠1+∠2与∠A的关系,再根据三角形内角和等于180°,求出∠1+∠2与∠A的度数关系.
【详解】
∵BD、C
解析:∠1+∠2-∠A=90°
【分析】
先根据三角形的外角等于与它不相邻的两个内角的和,写出∠1+∠2与∠A的关系,再根据三角形内角和等于180°,求出∠1+∠2与∠A的度数关系.
【详解】
∵BD、CE为△ABC的两条角平分线,
∴∠ABD=∠ABC,∠ACE=∠ACB,
∵∠1=∠ACE+∠A,∠2=∠ABD+∠A
∴∠1+∠2=∠ACE+∠A+∠ABD+∠A
=∠ABC+∠ACB+∠A+∠A
=(∠ABC+∠ACB+∠A)+∠A
=90°+∠A
故答案为∠1+∠2-∠A=90°.
【点睛】
考查了三角形的内角和等于180°、外角与内角关系及角平分线的性质,是基础题.三角形的外角与内角间的关系:三角形的外角与它相邻的内角互补,等于与它不相邻的两个内角的和.
十二、填空题
12.36°
【分析】
如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.
【详解】
解:如图,∵三角尺的两边a∥b,
∴∠3=∠2=54º,
∴∠1=180°-90°-∠3=36°.
故
解析:36°
【分析】
如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.
【详解】
解:如图,∵三角尺的两边a∥b,
∴∠3=∠2=54º,
∴∠1=180°-90°-∠3=36°.
故答案为:36°.
【点睛】
本题以三角板为载体,主要考查了平行线的性质和和平角的定义,属于基础题型,熟练掌握平行线的性质是解题关键.
十三、填空题
13.2cm
【分析】
由折叠的性质可得BD=CD,即可求解.
【详解】
解:∵折叠三角形纸片ABC,使点B与点C重合,
∴BD=CD,
∵△ABD的周长=AB+BD+AD=6+BD+AD,△ACD的周长
解析:2cm
【分析】
由折叠的性质可得BD=CD,即可求解.
【详解】
解:∵折叠三角形纸片ABC,使点B与点C重合,
∴BD=CD,
∵△ABD的周长=AB+BD+AD=6+BD+AD,△ACD的周长=AC+AD+CD=4+CD+AD,
∴△ABD与△ACD的周长之差=6-4=2cm,
故答案为:2cm.
【点睛】
本题考查了翻折变换,掌握折叠的性质是本题关键.
十四、填空题
14.5
【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.
故答案为:5.
点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
解析:5
【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.
故答案为:5.
点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
十五、填空题
15.(5,0)或(﹣5,0)或(0,5)或(0,﹣5)
【分析】
根据点A(0,0)及点B和点A在同一坐标轴上可知点B在x轴上或在y轴上,再根据坐标轴上到一点距离相等的点有两个,可得答案.
【详解】
解
解析:(5,0)或(﹣5,0)或(0,5)或(0,﹣5)
【分析】
根据点A(0,0)及点B和点A在同一坐标轴上可知点B在x轴上或在y轴上,再根据坐标轴上到一点距离相等的点有两个,可得答案.
【详解】
解:∵点A(0,0),点B和点A在同一坐标轴上,
∴点B在x轴上或在y轴上,
∵|AB|=5,
∴当点B在x轴上时,点B的坐标为(5,0)或(﹣5,0),
当点B在y轴上时,点B的坐标为(0,5)或(0,﹣5);
故答案为:(5,0)或(﹣5,0)或(0,5)或(0,﹣5).
【点睛】
本题考查了点的坐标,解决本题的关键是要注意坐标轴上到一点距离相等的点有两个,以防遗漏.
十六、填空题
16.【分析】
根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.
【详解】
解:∵A1的坐标为(3,1),
∴A
解析:
【分析】
根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.
【详解】
解:∵A1的坐标为(3,1),
∴A2(0,4),A3(−3,1),A4(0,−2),A5(3,1),
…,
依此类推,每4个点为一个循环组依次循环,
∵2021÷4=505…1,
∴的坐标与A1的坐标相同,为(3,1).
故答案是:(3,1).
【点睛】
考查点的坐标规律,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.
十七、解答题
17.(1)原式=;(2)x=-2或x=6.
【分析】
(1)根据绝对值、立方根和二次根式的性质计算即可;
(2)利用平方根的性质解方程即可.
【详解】
解:(1)原式;
(2)
【点睛】
本题考查平
解析:(1)原式=;(2)x=-2或x=6.
【分析】
(1)根据绝对值、立方根和二次根式的性质计算即可;
(2)利用平方根的性质解方程即可.
【详解】
解:(1)原式;
(2)
【点睛】
本题考查平方根、立方根和二次根式的性质,熟练掌握运算法则是解题关键.
十八、解答题
18.(1)25;(2)37
【分析】
(1)利用完全平方差公式求解.
(2)先配方,再求值.
【详解】
解:(1)
(2)
【点睛】
本题考查完全平方公式及其变形式,根据公式特征进行变形是求解
解析:(1)25;(2)37
【分析】
(1)利用完全平方差公式求解.
(2)先配方,再求值.
【详解】
解:(1)
(2)
【点睛】
本题考查完全平方公式及其变形式,根据公式特征进行变形是求解本题的关键.
十九、解答题
19.已知;同角的补角相等;AB;EF;内错角相等,两直线平行;∠ADE;两直线平行,内错角相等;已知;∠B;∠ADE;等量代换;同位角相等,两直线平行
【分析】
求出∠2=∠4,根据平行线的判定得出AB
解析:已知;同角的补角相等;AB;EF;内错角相等,两直线平行;∠ADE;两直线平行,内错角相等;已知;∠B;∠ADE;等量代换;同位角相等,两直线平行
【分析】
求出∠2=∠4,根据平行线的判定得出AB∥EF,根据平行线的性质得出∠3=∠ADE,求出∠B=∠ADE,再根据平行线的判定推出即可.
【详解】
解:DE∥BC,理由如下:
∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知),
∴∠2=∠4(同角的补角相等),
∴AB∥EF(内错角相等,两直线平行),
∴∠3=∠ADE(两直线平行,内错角相等),
∵∠3=∠B(已知),
∴∠B=∠ADE(等量代换),
∴DE∥BC(同位角相等,两直线平行),
【点睛】
此题考查了平行线的判定与性质,熟练掌握平行线的性质定理及判定定理是解题的关键.
二十、解答题
20.(1)见解析;(2)S△ABC=5;(3)存在,P点的坐标为(0,5)或(0,﹣3).
【分析】
(1)根据点的坐标,直接描点;
(2)根据点的坐标可知,ABx轴,且AB=3﹣(﹣2)=5,点C到线
解析:(1)见解析;(2)S△ABC=5;(3)存在,P点的坐标为(0,5)或(0,﹣3).
【分析】
(1)根据点的坐标,直接描点;
(2)根据点的坐标可知,ABx轴,且AB=3﹣(﹣2)=5,点C到线段AB的距离3﹣1=2,根据三角形面积公式求解;
(3)因为AB=5,要求ABP的面积为10,只要P点到AB的距离为4即可,又P点在y轴上,满足题意的P点有两个.
【详解】
解:(1)描点如图;
(2)依题意,得ABx轴,且AB=3﹣(﹣2)=5,
∴S△ABC=×5×2=5;
(3)存在;
∵AB=5,S△ABP=10,
∴P点到AB的距离为4,
又点P在y轴上,
∴P点的坐标为(0,5)或(0,﹣3).
【点睛】
本题考查了点的坐标的表示方法,能根据点的坐标表示三角形的底和高并求三角形的面积.
二十一、解答题
21.(1)2,;(2)2,;(3)
【分析】
(1)仿照题例,可直接求出的整数部分和小数部分;
(2)先求出的整数部分,再得到的整数部分,减去其整数部分,即得其小数部分;
(3)根据题例,先确定a、b,
解析:(1)2,;(2)2,;(3)
【分析】
(1)仿照题例,可直接求出的整数部分和小数部分;
(2)先求出的整数部分,再得到的整数部分,减去其整数部分,即得其小数部分;
(3)根据题例,先确定a、b,再计算a-b即可.
【详解】
解:(1)∵,即.
∴的整数部分为2,的小数部分为;
(2)∵ ,即 ,
∴的整数部分为1,
∴的整数部分为2,
∴小数部分为.
(3)∵,即,
∴的整数部分为2,的整数部分为4,即a=4,
所以的小数部分为,
即b=,
∴.
【点睛】
本题考查了无理数的估算,二次根式的加减.看懂题例并熟练运用是解决本题的关键.
二十二、解答题
22.(1)棱长为4;(2)边长为:(或)
【分析】
(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案.
【详解】
解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4.
解析:(1)棱长为4;(2)边长为:(或)
【分析】
(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案.
【详解】
解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4.
(2)因为正方体的棱长为4,所以AB=.
【点睛】
本题考查的是立方根与算术平方根的理解与计算,由实际的情境去理解问题本身就是求一个数的立方根与算术平方根是关键.
二十三、解答题
23.(1) ;(2)① ;②
【分析】
(1)由平行线的性质得到,由折叠的性质可知,∠2=∠BFE,再根据平角的定义求解即可;
(2) ①由(1)知,,根据平行线的性质得到 ,再由折叠的性质及平角的定义
解析:(1) ;(2)① ;②
【分析】
(1)由平行线的性质得到,由折叠的性质可知,∠2=∠BFE,再根据平角的定义求解即可;
(2) ①由(1)知,,根据平行线的性质得到 ,再由折叠的性质及平角的定义求解即可;
②由(1)知,∠BFE = ,由可知:,再根据条件和折叠的性质得到,即可求解.
【详解】
解:(1)如图,由题意可知,
∴,
∵,
∴,
,
由折叠可知.
(2)①由题(1)可知 ,
∵,
,
再由折叠可知:
,
;
②由可知:,
由(1)知,
,
又的度数比的度数大,
,
,
,
.
【点睛】
此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键.
二十四、解答题
24.(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α
【分析】
(1)过M作MN∥AB,由平行线的性质即可求得∠M的值.
(2)延长BA,DC交于E,
解析:(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α
【分析】
(1)过M作MN∥AB,由平行线的性质即可求得∠M的值.
(2)延长BA,DC交于E,应用四边形的内角和定理与平角的定义即可解决问题.
(3)分两种情形分别求解即可;
【详解】
解:(1)过M作MN∥AB,
∵AB∥CD,
∴AB∥MN∥CD,
∴∠1=∠A,∠2=∠C,
∴∠AMC=∠1+∠2=∠A+∠C=50°;
故答案为:50°;
(2)∠A+∠C=30°+α,
延长BA,DC交于E,
∵∠B+∠D=150°,
∴∠E=30°,
∵∠BAM+∠DCM=360°-(∠EAM+∠ECM)=360°-(360°-∠E-∠M)=30°+α;
即∠A+∠C=30°+α;
(3)①如下图所示:
延长BA、DC使之相交于点E,延长MC与BA的延长线相交于点F,
∵∠B+∠D=150°,∠AMC=α,∴∠E=30°
由三角形的内外角之间的关系得:
∠1=30°+∠2
∠2=∠3+α
∴∠1=30°+∠3+α
∴∠1-∠3=30°+α
即:∠A-∠C=30°+α.
②如图所示,210-∠A=(180°-∠DCM)+α,即∠A-∠DCM=30°-α.
综上所述,∠A-∠DCM=30°+α或30°-α.
【点睛】
本题考查了平行线的性质.解答该题时,通过作辅助线准确作出辅助线l∥AB,利用平行线的性质(两直线平行内错角相等)将所求的角∠M与已知角∠A、∠C的数量关系联系起来,从而求得∠M的度数.
二十五、解答题
25.(1)①45°;②∠F=a;(2)∠F+∠H的值不变,是定值180°.
【分析】
(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依据∠CAE是△ABC
解析:(1)①45°;②∠F=a;(2)∠F+∠H的值不变,是定值180°.
【分析】
(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依据∠CAE是△ABC的外角,可得∠B=∠CAE-∠ACB,再根据∠CAD是△ACF的外角,即可得到∠F=∠CAD-∠ACF=∠CAE-∠ACB=(∠CAE-∠ACB)=∠B;
(2)由(1)可得,∠F=∠ABC,根据角平分线的定义以及三角形内角和定理,即可得到∠H=90°+∠ABG,进而得到∠F+∠H=90°+∠CBG=180°.
【详解】
解:(1)①∵AD平分∠CAE,CF平分∠ACB,
∴∠CAD=∠CAE,∠ACF=∠ACB,
∵∠CAE是△ABC的外角,
∴∠B=∠CAE﹣∠ACB,
∵∠CAD是△ACF的外角,
∴∠F=∠CAD﹣∠ACF=∠CAE﹣∠ACB=(∠CAE﹣∠ACB)=∠B=45°,
故答案为45°;
②∵AD平分∠CAE,CF平分∠ACB,
∴∠CAD=∠CAE,∠ACF=∠ACB,
∵∠CAE是△ABC的外角,
∴∠B=∠CAE﹣∠ACB,
∵∠CAD是△ACF的外角,
∴∠F=∠CAD﹣∠ACF=∠CAE﹣∠ACB=(∠CAE﹣∠ACB)=∠B=a;
(2)由(1)可得,∠F=∠ABC,
∵∠AGB与∠GAB的角平分线交于点H,
∴∠AGH=∠AGB,∠GAH=∠GAB,
∴∠H=180°﹣(∠AGH+∠GAH)=180°﹣(∠AGB+∠GAB)=180°﹣(180°﹣∠ABG)=90°+∠ABG,
∴∠F+∠H=∠ABC+90°+∠ABG=90°+∠CBG=180°,
∴∠F+∠H的值不变,是定值180°.
【点睛】
本题主要考查了三角形内角和定理、三角形外角性质的综合运用,熟练运用定理是解题的关键.
展开阅读全文