资源描述
人教版中学七年级下册数学期末复习题含答案
一、选择题
1.如图,直线a,b被直线c所截,∠1的同旁内角是( )
A.∠2 B.∠3 C.∠4 D.∠5
2.下列各组图形可以通过平移互相得到的是( )
A. B.
C. D.
3.在平面直角坐标系中,下列各点在第二象限的是( )
A. B. C. D.
4.下列两个命题:①过一点有且只有一条直线和已知直线平行;②垂直于同一条直线的两条直线互相平行,其中判断正确的是( )
A.①②都对 B.①对②错 C.①②都错 D.①错②对
5.如图,直线,点在直线上,下列结论正确的是( )
A. B.
C. D.
6.下列说法错误的是( )
A.3的平方根是
B.﹣1的立方根是﹣1
C.0.1是0.01的一个平方根
D.算术平方根是本身的数只有0和1
7.一副直角三角板如图放置,使两三角板的斜边互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则∠1的度数为( )
A.90° B.75° C.65° D.60°
8.如图,在平面直角坐标系中,点.点第次向上跳动个单位至点,紧接着第次向左跳动个单位至点,第次向上跳动个单位至点,第次向右跳动个单位至点,第次又向上跳动个单位至点,第次向左跳动个单位至点,…….照此规律,点第次跳动至点的坐标是( )
A. B. C. D.
九、填空题
9.若a、b为实数,且满足|a﹣2|+=0,则a﹣b的立方根为_____.
十、填空题
10.若点与关于轴对称,则____________________________.
十一、填空题
11.如图,AD、AE分别是△ABC的角平分线和高,∠B=60°,∠C=70°,则∠EAD=______.
十二、填空题
12.如图将一张长方形纸片沿EF折叠后,点A、B分别落在A′、B′的位置,如果∠2=70°,则∠1的度数是___________.
十三、填空题
13.将一条长方形纸带按如图方式折叠,若,则的度数为________°.
十四、填空题
14.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若,则m,n,p,q四个实数中,绝对值最大的是________.
十五、填空题
15.点到两坐标轴的距离相等,则________.
十六、填空题
16.如图,在平面直角坐标系中,边长为1的等边△OA1A2的一条边OA2在x的正半轴上,O为坐标原点;将△OA1A2沿x轴正方向依次向右移动2个单位,依次得到△A3A4A5,△A6A7A8…,则顶点A2021的坐标为 __________________.
十七、解答题
17.计算:(1)||+2;
(2)
十八、解答题
18.已知a+b=5,ab=2,求下列各式的值.
(1)a2+b2;
(2)(a﹣b)2.
十九、解答题
19.如图,已知∠1+∠AFE=180°,∠A=∠2,求证:∠A=∠C+∠AFC
证明:∵ ∠1+∠AFE=180°
∴ CD∥EF( , )
∵∠A=∠2 ∴( )
( , )
∴ AB∥CD∥EF( , )
∴ ∠A= ,∠C= ,
( , )
∵ ∠AFE =∠EFC+∠AFC ,∴ = .
二十、解答题
20.将△ABO向右平移4个单位,再向下平移1个单位,得到三角形A′B′O′
(1)请画出平移后的三角形A′B′O′.
(2)写出点A′、O′的坐标.
二十一、解答题
21.例如∵即,∴的整数部分为2,小数部分为,仿照上例回答下列问题;
(1)介于连续的两个整数a和b之间,且a<b,那么a= ,b= ;
(2)x是的小数部分,y是的整数部分,求x= ,y= ;
(3)求的平方根.
二十二、解答题
22.如图1,用两个边长相同的小正方形拼成一个大的正方形.
(1)如图2,若正方形纸片的面积为1,则此正方形的对角线AC的长为 dm.
(2)如图3,若正方形的面积为16,李明同学想沿这块正方形边的方向裁出一块面积为12的长方形纸片,使它的长和宽之比为3∶2,他能裁出吗?请说明理由.
二十三、解答题
23.问题情境:
如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质,可得∠APC=∠APE+∠CPE=50°+60°=110°.
问题解决:
(1)如图2,AB∥CD,直线l分别与AB、CD交于点M、N,点P在直线I上运动,当点P在线段MN上运动时(不与点M、N重合),∠PAB=α,∠PCD=β,判断∠APC、α、β之间的数量关系并说明理由;
(2)在(1)的条件下,如果点P在线段MN或NM的延长线上运动时.请直接写出∠APC、α、B之间的数量关系;
(3)如图3,AB∥CD,点P是AB、CD之间的一点(点P在点A、C右侧),连接PA、PC,∠BAP和∠DCP的平分线交于点Q.若∠APC=116°,请结合(2)中的规律,求∠AQC的度数.
二十四、解答题
24.如图1,点O在上,,射线交于点C,已知m,n满足:.
(1)试说明//的理由;
(2)如图2,平分,平分,直线、交于点E,则______;
(3)若将绕点O逆时针旋转,其余条件都不变,在旋转过程中,的度数是否发生变化?请说明你的结论.
二十五、解答题
25.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.
(1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;
(2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN与CD相交于点E,求∠CEN的度数;
(3)将图①中的三角板OMN绕点O按每秒30°的速度按逆时针方向旋转一周,在旋转的过程中,在第____________秒时,直线MN恰好与直线CD垂直.(直接写出结果)
【参考答案】
一、选择题
1.A
解析:A
【分析】
根据同旁内角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行求解.
【详解】
解: 直线a,b被直线c所截,∠1的同旁内角是∠2,
故选:A.
【点睛】
本题考查了同旁内角的定义,能熟记同旁内角的定义的内容是解此题的关键,注意数形结合.
2.C
【分析】
根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.
【详解】
解:观察图形可知图案C通过平移后可以得到.
故选:C.
【点睛】
本题考查的是
解析:C
【分析】
根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.
【详解】
解:观察图形可知图案C通过平移后可以得到.
故选:C.
【点睛】
本题考查的是平移变换及其基本性质,掌握以上知识是解题的关键.
3.D
【分析】
根据在第二象限的点的特征进行判断,即可得到答案.
【详解】
解:∵第二象限的点特征是横坐标小于零,纵坐标大于零,
∴点(-3,7)在第二象限,
故选D.
【点睛】
本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.C
【分析】
根据平行公理及其推论判断即可.
【详解】
解:①过直线外一点有且只有一条直线和已知直线平行,故错误;
②在同一平面内,垂直于同一条直线的两条直线互相平行,故错误;
故选:C.
【点睛】
本题主要考查了命题与定理,平行公理及其推论,属于基础知识,要牢牢掌握.
5.D
【分析】
根据两直线平行,同旁内角互补可得∠1+∠AOF=180°,再根据两直线平行,内错角相等可得∠3=∠AOC,而通过∠AOF=∠AOC-∠2,整理可得∠1+∠3-∠2=180°.
【详解】
解:∵AB∥EF,
∴∠1+∠AOF=180°,
∵CD∥AB,
∴∠3=∠AOC,
又∵∠AOF=∠AOC−∠2=∠3-∠2,
∴∠1+∠3-∠2=180°.
故选:D.
【点睛】
本题主要考查平行线的性质,从复杂图形中找出内错角,同旁内角是解题的关键.
6.A
【分析】
根据平方根、立方根、算术平方根的概念进行判断即可.
【详解】
解:A、3的平方根是±,原说法错误,故此选项符合题意;
B、﹣1的立方根是﹣1,原说法正确,故此选项不符合题意;
C、0.1是0.01的一个平方根,原说法正确,故此选项不符合题意;
D、算术平方根是本身的数只有0和1,原说法正确,故此选项不符合题意.
故选:A.
【点睛】
本题考查了平方根、立方根、算术平方根的概念,掌握平方根、立方根、算术平方根的概念是解题的关键.
7.B
【分析】
根据平行线的性质可得∠FDC=∠F=30°,然后根据三角形外角的性质可得结果.
【详解】
解:如图,
∵EF∥BC,
∴∠FDC=∠F=30°,
∴∠1=∠FDC+∠C=30°+45°=75°,
故选:B.
【点睛】
本题主要考查了平行线的性质以及三角形外角的性质,熟知三角板各个角的度数是解本题的关键.
8.A
【分析】
设第n次跳动至点Pn,根据部分点An坐标的变化找出变化规律P4n(n + 1,2n),Pn+1(n + 1,2n + 1),P4n+2(-n-1,2n+ 1),P4n+3(-n-1,2
解析:A
【分析】
设第n次跳动至点Pn,根据部分点An坐标的变化找出变化规律P4n(n + 1,2n),Pn+1(n + 1,2n + 1),P4n+2(-n-1,2n+ 1),P4n+3(-n-1,2n +2),依此规律结合200 = 50 ×4,即可得出点P200的坐标.
【详解】
解:设第n次跳动至点Pn,观察发现:P(1,0),P1(1,1),P2(-1,1),P3(-1,2),P4(2,2),P5(2,3),P6(-2,3),P7(-2,4),P8(3,4),P9(3,5),...,
∴P4n+1(n + 1,2n +1),P4n+2(-n-1,2n+ 1),
P4n+3(-n-1,2n+2),P4n(n + 1,2n),(n为自然数),
∵200 = 50 × 4,
∴P200(50+1 ,50×2),即(51,100).
故选A.
【点睛】
本题考查了规律型中点的坐标,解题的关键是准确找到点的坐标变化规律.
九、填空题
9.-1
【分析】
根据非负数的性质,求出a、b的值,再进而计算所给代数式的立方根.
【详解】
解:∵|a﹣2|+=0,|a﹣2|≥0,≥0
∴a﹣2=0,3﹣b=0
∴a=2,b=3
∴,
故答案为:
解析:-1
【分析】
根据非负数的性质,求出a、b的值,再进而计算所给代数式的立方根.
【详解】
解:∵|a﹣2|+=0,|a﹣2|≥0,≥0
∴a﹣2=0,3﹣b=0
∴a=2,b=3
∴,
故答案为:﹣1.
【点睛】
本题主要考查了非负数的性质,立方根的性质,关键是根据“两个非负数和为0,则这两个数都为0”列出方程求得a、b的值.
十、填空题
10.0
【分析】
根据平面直角坐标系中关于轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可.
【详解】
∵点与关于轴对称
∴
∴,
故答案为:0.
【点睛】
本题主要考查了平面直角坐标系内点
解析:0
【分析】
根据平面直角坐标系中关于轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可.
【详解】
∵点与关于轴对称
∴
∴,
故答案为:0.
【点睛】
本题主要考查了平面直角坐标系内点的轴对称,熟练掌握相关点的轴对称特征是解决本题的关键.
十一、填空题
11.;
【详解】
解:由题意可知,∠B=60°,∠C=70°,所以°,
所以°,
在三角形BAE中,°,所以∠EAD=5°
故答案为:5°.
【点睛】
本题属于对角平分线和角度基本知识的变换求解.
解析:;
【详解】
解:由题意可知,∠B=60°,∠C=70°,所以°,
所以°,
在三角形BAE中,°,所以∠EAD=5°
故答案为:5°.
【点睛】
本题属于对角平分线和角度基本知识的变换求解.
十二、填空题
12.55°
【分析】
先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案.
【详解】
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠B′FC=∠2=70°,
∴∠1+∠
解析:55°
【分析】
先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案.
【详解】
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠B′FC=∠2=70°,
∴∠1+∠B′FE=180°-∠B′FC=110°,
由折叠知∠1=∠B′FE,
∴∠1=∠B′FE=55°,
故答案为:55°.
【点睛】
本题主要考查折叠的性质和平行线的性质,解题的关键是掌握矩形的对边平行、两直线平行同位角相等性质.
十三、填空题
13.36
【分析】
根据平行线的性质、折叠的性质即可解决.
【详解】
∵AB∥CD,如图
∴∠GEC=∠1=108゜
由折叠的性质可得:∠2=∠FED
∵∠2+∠FED+∠GEC=180゜
∴∠2=
解析:36
【分析】
根据平行线的性质、折叠的性质即可解决.
【详解】
∵AB∥CD,如图
∴∠GEC=∠1=108゜
由折叠的性质可得:∠2=∠FED
∵∠2+∠FED+∠GEC=180゜
∴∠2=
故答案为:36
【点睛】
本题考查了平行线的性质、折叠的性质、平角的概念,关键是掌握折叠的性质.
十四、填空题
14.【分析】
根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.
【详解】
∵,
∴n和q互为相反数,O在线段NQ的中点处,
∴绝对值最大的是点P表示的数.
故
解析:
【分析】
根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.
【详解】
∵,
∴n和q互为相反数,O在线段NQ的中点处,
∴绝对值最大的是点P表示的数.
故答案为:.
【点睛】
本题考查了实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.
十五、填空题
15.或.
【分析】
根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可.
【详解】
解:∵点到两坐标轴的距离相等,
∴,
或,
解得,或,
故答案为:或.
【点睛】
本题考查了点到坐标轴的距
解析:或.
【分析】
根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可.
【详解】
解:∵点到两坐标轴的距离相等,
∴,
或,
解得,或,
故答案为:或.
【点睛】
本题考查了点到坐标轴的距离,解题关键是明确到坐标轴的距离是坐标的绝对值.
十六、填空题
16.(1346.5,).
【分析】
观察图形可知,3个点一个循环,每个循环向右移动2个单位,依此可求顶点A2021的坐标.
【详解】
解:是等边三角形,边长为1
,,,,…
观察图形可知,3个点一个循
解析:(1346.5,).
【分析】
观察图形可知,3个点一个循环,每个循环向右移动2个单位,依此可求顶点A2021的坐标.
【详解】
解:是等边三角形,边长为1
,,,,…
观察图形可知,3个点一个循环,每个循环向右移动2个单位
2021÷3=673…1,
673×2=1346,故顶点A2021的坐标是(1346.5,).
故答案为:(1346.5,).
【点睛】
本题考查了平面直角坐标系点的规律,等边三角形的性质,勾股定理,找到规律是解题的关键.
十七、解答题
17.(1)(2)3
【分析】
(1)根据二次根式的运算法即可求解;
(2)根据实数的性质化简,故可求解.
【详解】
(1)||+2
=
=
(2)
=
=3.
【点睛】
此题主要考查实数与二次根式的运算
解析:(1)(2)3
【分析】
(1)根据二次根式的运算法即可求解;
(2)根据实数的性质化简,故可求解.
【详解】
(1)||+2
=
=
(2)
=
=3.
【点睛】
此题主要考查实数与二次根式的运算,解题的关键是熟知其运算法则.
十八、解答题
18.(1)21;(2)17
【分析】
(1)根据完全平方公式变形,得到a2+b2=(a+b)2﹣2ab,即可求解;
(1)根据完全平方公式变形,得到(a﹣b)2=a2+b2-2ab,即可求解.
【详解】
解析:(1)21;(2)17
【分析】
(1)根据完全平方公式变形,得到a2+b2=(a+b)2﹣2ab,即可求解;
(1)根据完全平方公式变形,得到(a﹣b)2=a2+b2-2ab,即可求解.
【详解】
解:(1)∵a+b=5,ab=2,
∴a2+b2=(a+b)2﹣2ab=52﹣2×2=21;
(2))∵a+b=5,ab=2,
∴(a﹣b)2=a2+b2-2ab=21-2×2=17.
【点睛】
本题主要考查了完全平方公式,熟练掌握 及其变形公式是解题的关键.
十九、解答题
19.同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC .
【分析】
根据同旁
解析:同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC .
【分析】
根据同旁内角互补,两直线平行可得 CD∥EF,根据∠A=∠2利用同位角相等,两直线平行,AB∥CD,根据平行同一直线的两条直线平行可得AB∥CD∥EF根据平行线的性质可得∠A=∠AFE ,∠C=∠EFC,根据角的和可得 ∠AFE =∠EFC+∠AFC 即可.
【详解】
证明:∵ ∠1+∠AFE=180°
∴ CD∥EF(同旁内角互补,两直线平行),
∵∠A=∠2 ,
∴( AB∥CD ) (同位角相等,两直线平行),
∴ AB∥CD∥EF(两条直线都与第三条直线平行,则这两直线也互相平行)
∴ ∠A= ∠AFE ,∠C= ∠EFC,(两直线平行,内错角相等)
∵ ∠AFE =∠EFC+∠AFC ,
∴ ∠A = ∠C+∠AFC .
故答案为同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC .
【点睛】
本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键.
二十、解答题
20.(1)见解析;(2)A′,O′
【分析】
(1)分别作出A,B,O的对应点A′,B′,O′即可.
(2)根据点的位置写出坐标即可.
【详解】
解:(1)如图,△A′B′O′即为所求作.
(2)A′(
解析:(1)见解析;(2)A′,O′
【分析】
(1)分别作出A,B,O的对应点A′,B′,O′即可.
(2)根据点的位置写出坐标即可.
【详解】
解:(1)如图,△A′B′O′即为所求作.
(2)A′(2,1),O′(4,−1).
【点睛】
本题考查作图−平移变换,解题的关键是熟练掌握基本知识,属于中考常考题型.
二十一、解答题
21.(1),;(2);(3)
【分析】
(1)根据的范围确定出、的值;
(2)求出,的范围,即可求出、的值,代入求出即可;
(3)将代入中即可求出.
【详解】
解:(1),
,
,,
故答案是:,;
(
解析:(1),;(2);(3)
【分析】
(1)根据的范围确定出、的值;
(2)求出,的范围,即可求出、的值,代入求出即可;
(3)将代入中即可求出.
【详解】
解:(1),
,
,,
故答案是:,;
(2),
,,
的小数部分为:,
的整数部分为:3;
故答案是:;
(3),
,
的平方根为:.
【点睛】
本题考查了估算无理数的大小的应用、求平方根,解题的关键是读懂题意及求出.
二十二、解答题
22.(1);(2)不能,理由见解析
【分析】
(1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长;
(2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可.
【详解】
解:
解析:(1);(2)不能,理由见解析
【分析】
(1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长;
(2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可.
【详解】
解:(1)∵正方形纸片的面积为,
∴正方形的边长,
∴.
故答案为:.
(2)不能;
根据题意设长方形的长和宽分别为和.
∴长方形面积为:,
解得:,
∴长方形的长边为.
∵,
∴他不能裁出.
【点睛】
本题考查了算术平方根在长方形和正方形面积中的应用,灵活的进行算术平方根计算及无理数大小比较是解题的关键.
二十三、解答题
23.(1)∠APC=α+β,理由见解析;(2)∠APC=α-β或∠APC=β-α;(3)58°
【分析】
(1)过点P作PE∥AB,根据平行线的判定与性质即可求解;
(2)分点P在线段MN或NM的延长线
解析:(1)∠APC=α+β,理由见解析;(2)∠APC=α-β或∠APC=β-α;(3)58°
【分析】
(1)过点P作PE∥AB,根据平行线的判定与性质即可求解;
(2)分点P在线段MN或NM的延长线上运动两种情况,根据平行线的判定与性质及角的和差即可求解;
(3)过点P,Q分别作PE∥AB,QF∥AB,根据平行线的判定与性质及角的和差即可求解.
【详解】
解:(1)如图2,过点P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠APE=α,∠CPE=β,
∴∠APC=∠APE+∠CPE=α+β.
(2)如图,在(1)的条件下,如果点P在线段MN的延长线上运动时,
∵AB∥CD,∠PAB=α,
∴∠1=∠PAB=α,
∵∠1=∠APC+∠PCD,∠PCD=β,
∴α=∠APC+β,
∴∠APC=α-β;
如图,在(1)的条件下,如果点P在线段NM的延长线上运动时,
∵AB∥CD,∠PCD=β,
∴∠2=∠PCD=β,
∵∠2=∠PAB+∠APC,∠PAB=α,
∴β=α+∠APC,
∴∠APC=β-α;
(3)如图3,过点P,Q分别作PE∥AB,QF∥AB,
∵AB∥CD,
∴AB∥QF∥PE∥CD,
∴∠BAP=∠APE,∠PCD=∠EPC,
∵∠APC=116°,
∴∠BAP+∠PCD=116°,
∵AQ平分∠BAP,CQ平分∠PCD,
∴∠BAQ=∠BAP,∠DCQ=∠PCD,
∴∠BAQ+∠DCQ=(∠BAP+∠PCD)=58°,
∵AB∥QF∥CD,
∴∠BAQ=∠AQF,∠DCQ=∠CQF,
∴∠AQF+∠CQF=∠BAQ+∠DCQ=58°,
∴∠AQC=58°.
【点睛】
此题考查了平行线的判定与性质,添加辅助线将两条平行线相关的角联系到一起是解题的关键.
二十四、解答题
24.(1)见解析;(2)45;(3)不变,见解析;
【分析】
(1)由可求得m及n,从而可求得∠MOC=∠OCQ,则可得结论;
(2)易得∠AON的度数,由两条角平分线,可得∠DON,∠OCF的度数,也
解析:(1)见解析;(2)45;(3)不变,见解析;
【分析】
(1)由可求得m及n,从而可求得∠MOC=∠OCQ,则可得结论;
(2)易得∠AON的度数,由两条角平分线,可得∠DON,∠OCF的度数,也易得∠COE的度数,由三角形外角的性质即可求得∠OEF的度数;
(3)不变,分三种情况讨论即可.
【详解】
(1)∵,,且
∴,
∴m=20,n=70
∴∠MOC=90゜-∠AOM=70゜
∴∠MOC=∠OCQ=70゜
∴MN∥PQ
(2)∵∠AON=180゜-∠AOM=160゜
又∵平分,平分
∴,
∵
∴
∴∠OEF=∠OCF+∠COE=35゜+10゜=45゜
故答案为:45.
(3)不变,理由如下:
如图,当0゜<α<20゜时,
∵CF平分∠OCQ
∴∠OCF=∠QCF
设∠OCF=∠QCF=x
则∠OCQ=2x
∵MN∥PQ
∴∠MOC=∠OCQ=2x
∵∠AON=360゜-90゜—(180゜-2x)=90゜+2x,OD平分∠AON
∴∠DON=45゜+x
∵∠MOE=∠DON=45゜+x
∴∠COE=∠MOE-∠MOC=45゜+x-2x=45゜-x
∴∠OEF=∠COE+∠OCF=45゜-x+x=45゜
当α=20゜时,OD与OB共线,则∠OCQ=90゜,由CF平分∠OCQ知,∠OEF=45゜
当20゜<α<90゜时,如图
∵CF平分∠OCQ
∴∠OCF=∠QCF
设∠OCF=∠QCF=x
则∠OCQ=2x
∵MN∥PQ
∴∠NOC=180゜-∠OCQ=180゜-2x
∵∠AON=90゜+(180゜-2x)=270゜-2x,OD平分∠AON
∴∠AOE=135゜-x
∴∠COE=90゜-∠AOE=90゜-(135゜-x)=x-45゜
∴∠OEF=∠OCF-∠COE=x-(x-45゜)=45゜
综上所述,∠EOF的度数不变.
【点睛】
本题主要考查了角平分线的定义,平行线的判定与性质,角的和差关系,注意分类讨论,引入适当的量便于运算简便.
二十五、解答题
25.(1)105°;(2)135°;(3)5.5或11.5.
【分析】
(1)在△CEN中,用三角形内角和定理即可求出;
(2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角
解析:(1)105°;(2)135°;(3)5.5或11.5.
【分析】
(1)在△CEN中,用三角形内角和定理即可求出;
(2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角互补即可求出∠CEN的度数.
(3)画出图形,求出在MN⊥CD时的旋转角,再除以30°即得结果.
【详解】
解:(1)在△CEN中,∠CEN=180°-∠ECN-∠CNE=180°-45°-30°=105°;
(2)∵∠BON=30°,∠N=30°,
∴∠BON=∠N,
∴MN∥CB.
∴∠OCD+∠CEN=180°,
∵∠OCD=45°
∴∠CEN=180°-45°=135°;
(3)如图,MN⊥CD时,旋转角为360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒时,直线MN恰好与直线CD垂直.
【点睛】
本题以学生熟悉的三角板为载体,考查了三角形的内角和、平行线的判定和性质、垂直的定义和旋转的性质,前两小题难度不大,难点是第(3)小题,解题的关键是画出适合题意的几何图形,弄清求旋转角的思路和方法,本题的第一种情况是将旋转角∠DOM放在四边形DOMF中,用四边形内角和求解,第二种情况是用周角减去∠DOM的度数.
展开阅读全文