1、人教版八年级下册数学福州数学期末试卷测试卷附答案一、选择题1函数中自变量x的取值范围是( )ABCD2以下列各组数为边长,不能构成直角三角形的是( )A1,2,3B5,12,13C3,4,5D1,2,3下列命题不是真命题的是( )A等边三角形的角平分线相等B线段的垂直平分线上的点到线段两端的距离相等C有两个角相等的三角形是等腰三角形D一组对边平行的四边形是平行四边形4为了解居民用水情况,在某小区随机抽查记录了20户家庭的月用水量,汇总结果如表:月用水量(吨)45689户数121331则关于这20户家庭的月用水量,下列说法正确的是()A月用水量的众数是9吨B月用水量的众数是13吨C月用水量的中位
2、数是6吨D月用水量的平均数是6吨5已知实数a,b为的两边,且满足,第三边,则第三边c上的高的值是 ABCD6如图,在ABC中,点D为BC边的中点,点E为AC上一点将C沿DE所在直线翻折,使点C落在AB上的点F处,若AEF=50,则A的度数为( )A30B45C55 D657如图,将矩形ABCD沿EF翻折,使B点恰好与D点重合,已知AD8,CD4,则折痕EF的长为( )A4B5CD8如图1,动点P从菱形ABCD的顶点A出发,沿ACD以1cm/s的速度运动到点D设点P的运动时间为(s),PAB的面积为y(cm2)表示y与x的函数关系的图象如图2所示,则a的值为()ABC2D2二、填空题9若函数y在
3、实数范围内有意义,则自变量x的取值范围是_10如图,菱形中,为对角线,点为边上一点,则阴影部分的面积为_11如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有_m12如图,在平行四边形ABCD中,对角线AC、BD相交于点O,且OAOD,OAD55,则OAB的度数为_13已知一次函数y=ax1的图象经过点(2,2),则该一次函数的解析式为_14如图,连接四边形ABCD各边中点,得到四边形EFGH,只要添加_条件,就能保证四边形EFGH是菱形15如图,在平面直角坐标系中,点A1,A2,A3,都在x轴正半轴上,点B1,B2,B3,都在直线y=kx上,B1OA1=30,A
4、1B1A2,A2B2A3,A3B3A4,都是等边三角形,且OA11,则点B6的纵坐标是_16如图,在矩形中,沿直线折叠,使点与点重合,折痕交于点,交于点,连接,则_三、解答题17计算下列各式的值(1)(2)(3)(4)18春节期间,乐乐帮妈妈挂灯笼时,发现,如图长2.5米的梯子斜靠在一竖直的墙上,这时为1.5米,当梯子的底端向右移动0.5米到处时,你能帮乐乐算算梯子顶端下滑多少米吗?(处)19图、图都是44的正方形网格,每个小正方形的项点为格点,每个小正方形的边长均为1,在图、图中已画出AB,点A、B均在格点上,按下列要求画图:(1)在图中,画一个以AB为腰且三边长都是无理数的等腰三角形ABC
5、,点C为格点;(2)在图中,画一个以AB为底的等腰三角形ABD,点D为格点20如图,平行四边形的对角线、相较于点O,且,求证:四边形是矩形21阅读下面的解答过程,然后作答:有这样一类题目:将化简,若你能找到两个数 m和n,使m2+n2=a 且 mn=,则a+2 可变为m2+n2+2mn,即变成(m+n)2,从而使得化简例如:5+2=3+2+2=()2+()2+2=(+)2=+请你仿照上例将下列各式化简(1),(2)22甲、乙两个种子店都销售“黄金1号”玉米种子,在甲店,该玉米种子的价格为m元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折某科技人员对付款金额和购买量这两个变
6、量的对应关系用列表法做了分析,并绘制出函数图象,如表是该科技人员绘制的图象和表格的不完整资料,已知点A的坐标为(2,10)在乙店,不论一次购买该种子的数量是多少,付款金额T(元)与购买数量x(千克)的函数关系式为Tkx 付款金额(元)m7.51012n购买量(千克)11.522.53(1)根据题意,得m ,n (2)当x2时,求出y关于x的函数解析式;(3)如果某农户要购买4千克该玉米种子,那么该农户应选择哪个店更合算?23已知如图,在中,点是边上一点,连接、,点是上一动点,连接(1)如图1,若点是的中点,求的面积;(2)如图2,当时,连接,求证:;(3)如图3,以为直角边作等腰,连接,若,当
7、点在运动过程中,请直接写出周长的最小值24请你根据学习函数的经验,完成对函数y|x|1的图象与性质的探究下表给出了y与x的几组对应值x3210123ym101012【探究】(1)m ;(2)在给出的平面直角坐标系中,描出表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象;(3)根据函数图象,当y随x的增大而增大时,x的取值范围是 ;【拓展】(4)函数y1|x|1的图象与函数y|x|1的图象交于两点,当y1y时,x的取值范围是 ;(5)函数y2|x|b(b0)的图象与函数y|x|1的图象围成的四边形的形状是 ,该四边形的面积为18时,则b的值是 25(1)问题探究:如图,在四边形ABCD
8、中,ABCD,E是BC的中点,AE是BAD的平分线,则线段AB,AD,DC之间的等量关系为 ;(2)方法迁移:如图,在四边形ABCD中,ABCD,AF与DC的延长线交于点F,E是BC的中点,AE是BAF的平分线,试探究线段AB,AF,CF之间的等量关系,并证明你的结论;(3)联想拓展:如图,ABCF,E是BC的中点,点D在线段AE上,EDFBAE,试探究线段AB,DF,CF之间的数量关系,并证明你的结论26如图,已知平面直角坐标系中,、,现将线段绕点顺时针旋转得到点,连接.(1)求出直线的解析式;(2)若动点从点出发,沿线段以每分钟个单位的速度运动,过作交轴于,连接.设运动时间为分钟,当四边形
9、为平行四边形时,求的值.(3)为直线上一点,在坐标平面内是否存在一点,使得以、为顶点的四边形为菱形,若存在,求出此时的坐标;若不存在,请说明理由.【参考答案】一、选择题1A解析:A【分析】根据二次根式有意义的条件:被开方数大于或等于0,即可求解.【详解】解:由二次根式有意义的条件可得:,解得:,故选A.【点睛】本题主要考查函数自变量取值范围和二次根式有意义的条件,解决本题的关键是要熟练掌握二次根式有意义的条件.2A解析:A【分析】分别求出各选项中较小两数的平方和及最大数的平方,比较后即可得出结论【详解】解:、由于,不能作为直角三角形的三边长,符合题意;、由于,能作为直角三角形的三边长,不符合题
10、意;、由于,能作为直角三角形的三边长,不符合题意;、由于,能作为直角三角形的三边长,不符合题意故选:A【点睛】本题考查了勾股定理的逆定理,解题的关键是牢记“如果三角形的三边长,满足,那么这个三角形就是直角三角形”3D解析:D【解析】【分析】根据等边三角形的性质、线段垂直平分线的性质定理、等腰三角形的判定定理、平行四边形的定义判断即可【详解】解:A、等边三角形的角平分线相等,是真命题,不符合题意;B、线段的垂直平分线上的点到线段两端的距离相等,是真命题,不符合题意;C、有两个角相等的三角形是等腰三角形,是真命题,不符合题意;D、一组对边平行的四边形是平行四边形或梯形,本选项说法不是真命题,符合题
11、意;故选:D【点睛】本题考查了真假命题的判断,等边三角形,线段的垂直平分线,等腰三角形,平行四边形,掌握相关性质定理是解题的关键4C解析:C【解析】【分析】根据表格中的数据,可以得到这组数据的中位数,众数和平均数,从而可以解答本题【详解】解:由表格中的数据可得,月用水量的众数是6吨,故选项A、B错误;月用水量的中位数是(6+6)2=6(吨),故选项C正确;月用水量的平均数是:=6.25(吨),故选项D错误;故选:C【点睛】本题考查众数、中位数和加权平均数,解答本题的关键是计算出这组数据的平均数和中位数5D解析:D【分析】本题主要考查了算术平方根的非负性及偶次方的非负性,勾股定理的逆定理及三角形
12、面积的运算,首先根据非负性的性质得出a、b的值是解题的关键,再根据勾股定理的逆定理判定三角形为直角三角形,再根据三角形的面积得出c边上高即可【详解】解:整理得,所以,解得;因为,所以,所以是直角三角形,设第三边c上的高的值是h,则的面积,所以故选:D【点睛】本题考查了非负数的性质、勾股定理的逆定理,解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为06D解析:D【解析】【分析】由点为边的中点,得到,根据折叠的性质得到,得到,根据等腰三角形的性质得到,由三角形的内角和和平角的定义得到,于是得到结论【详解】解:点为边的中点,将沿翻折,使点落在上的点处,故选:D【点睛】本题考查的是
13、图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键7D解析:D【解析】【分析】作于,则,由四边形为矩形,得,由折叠的性质及等量代换得,设,则,由勾股定理解得,所以,根据矩形的判定可证四边形是矩形,可得出,在由勾股定理得即可计算出【详解】解:如图,作于,则,四边形为矩形,矩形沿折叠,使点与点重合,设,则,在中,解得:,四边形是矩形,在中,故选:D【点睛】本题考查了折叠的性质,矩形的判定和性质、勾股定理,解题的关键是掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化8B解析:B【分析】由图2知,菱形的边长为a,对角线AC=,则对角线BD
14、为22,当点P在线段AC上运动时,yAPBDx,即可求解【详解】解:由图2知,菱形的边长为a,对角线AC,则对角线BD为22,当点P在线段AC上运动时,yAPBDx,由图2知,当x时,ya,即a,解得:a,故选:B【点睛】本题考查的是动点图象问题,涉及到函数、解直角三角形等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解二、填空题9x5【解析】【分析】利用二次根式有意义的条件得到5x0,然后解不等式即可【详解】根据题意得5x0,所以x5故答案为x5【点睛】本题考查了函数自变量的取值范围,关键是掌握自变量的范围,二次根式有意义的范围:二次根式的被开方数是非负数10A解析:【
15、解析】【分析】取对角线的交点为,根据菱形的性质及三角形面积的计算公式可知阴影部分的面积为面积的两倍【详解】解:取对角线的交点为,过点作的垂线,交分别于点,如图所示:根据菱形的性质及三角形面积的计算知,阴影部分的面积为,AOB=90, ,即,故阴影部分的面积为,故答案是:【点睛】本题考查了菱形的性质、勾股定理、三角形面积求法,解题的关键是:利用转换的思想来解答11A解析:4【解析】【详解】解:解如图所示:在RtABC中,BC=3,AC=5,由勾股定理可得:AB2+BC2=AC2设旗杆顶部距离底部AB=x米,则有32+x2=52,解得x=4故答案为:4【点睛】本题考查勾股定理12A解析:35【分析
16、】根据矩形的判定得到四边形ABCD是矩形,由矩形的性质求出DAB,代入OABDABOAD求出即可【详解】解:四边形ABCD是平行四边形,OAOC,OBOD,OAOD,ACBD,四边形ABCD是矩形,DAB90,OAD55,OABDABOAD35,故答案为:35【点睛】本题考查了矩形的判定和性质,能根据矩形的性质求出DAB的度数是解此题的关键13y=x-1【详解】试题分析:把(2,2)代入y=ax1得:2a1=2,解得:a=,即y=x1故答案为y=x-1考点: 一次函数图象上点的坐标特征14A解析:ACBD【分析】根据中位线的性质易得四边形EFGH为平行四边形,那么只需让一组邻边相等即可,而邻边
17、都等于对角线的一半,那么对角线需相等【详解】解:E、F为AD、AB中点,EF为ABD的中位线,EFBD,EF=BD,同理可得GHBD,GH=BD,FGAC,FG=AC,EFGH,EF=GH,四边形EFGH为平行四边形,当EF=FG时,四边形EFGH为菱形,FG=AC,EF=BD,EF=FGAC=BD,故答案为:ACBD【点睛】本题考查菱形的判定,四边相等的四边形是菱形和中位线定理,解题的关键是了解菱形的判定定理,难度不大15【分析】设BnAnAn+1的边长为an,根据勾股定理求出点M坐标,求出直线的解析式,得出AnOBn=30,再结合等边三角形的性质及外角的性质即可得出OBnAn=30,从而得
18、出AnBn=解析:【分析】设BnAnAn+1的边长为an,根据勾股定理求出点M坐标,求出直线的解析式,得出AnOBn=30,再结合等边三角形的性质及外角的性质即可得出OBnAn=30,从而得出AnBn=OAn,列出部分an的值,发现规律an+1=2an,依此规律结合等边三角形的性质即可得出结论.【详解】设BnAn An+1的边长为an,点B1,B2,B3,是直线y= 上的第一象限内的点,过A1作A1Mx轴交直线OB1于M点,OA11,点M的横坐标为1,MOA1=30,OM=2A1M在RtOMA1中,由勾股定理(2A1M)2=A1M2+1解得A1M=点M的坐标为(1,)点M在y= 上,=A1OB
19、1 = 30,又BnAnAn+1为等边三角形,BnAnAn+1 = 60,OBnAn = BnAnAn+1 -BnOAn=30,AnBn = OAn,OA1=1,a1 =1,a2=1+1=2= 2a1,a3= 1+a1 +a2=4= 2a2,a4 = 1+a1 +a2十a3 =8= 2a3,an+1 = 2an,a5 =2a4= 16, a6 = 2a5 = 32,a7= 2a6= 64,A6B6A7为等边三角形,点B6的坐标为(a7-a6,(a7- a6),点B6的坐标为(48,16)故答案为:16.【点睛】本题考查了一次函数的性质、等边三角形的性质以及三角形外角的性质,勾股定理,解题的关键
20、是找出规律:an+1=2an本题属于灵活题,难度较大,解决该题型题目时,根据等边三角形边的特征找出边的变化规律是关键.16【分析】先证明得到AE=CE,再证明AF=AE=CE,利用勾股定理求出cm ,然后求出cm,cm 由此求解即可【详解】解:如图,过点E作EGBC于G,由折叠的性质可知,CF=AF,解析:【分析】先证明得到AE=CE,再证明AF=AE=CE,利用勾股定理求出cm ,然后求出cm,cm 由此求解即可【详解】解:如图,过点E作EGBC于G,由折叠的性质可知,CF=AF,AFE=EFC,AE=CE四边形ABCD是矩形,B=BCD=D=90,ADBC,cm,AEF=EFC,AEF=A
21、FE,AF=AE=CE,设AF=CF=x,则BF=4-x,解得,cm,EGCG,EGC=D=GCD=90,四边形EGCD是矩形,cm,cm ,cm,cm ,故答案为:【点睛】本题主要考查了矩形的性质与判定,勾股定理,折叠的性质,等腰三角形的性质与判定,全等三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解三、解答题17(1);(2);(3)0;(4)或【分析】(1)根据二次根式的乘除计算法则求解即可;(2)先利用二次根式的性质化简,然后根据二次根式的加减计算法则求解即可;(3)先根据二次根式的性质化简,然解析:(1);(2);(3)0;(4)或【分析】(1)根据二次根式的乘除计算法
22、则求解即可;(2)先利用二次根式的性质化简,然后根据二次根式的加减计算法则求解即可;(3)先根据二次根式的性质化简,然后根据二次根式的混合计算法则求解即可;(4)根据求平方根的方法解方程即可【详解】(1);(2);(3);(4),或,解得或【点睛】本题主要考查了利用二次根式的性质化简,二次根式的乘除计算,二次根式的混合计算,二次根式的加减计算,求平方根法解方程,熟知相关计算法则是解题的关键185米【分析】在中,由勾股定理可求出AC的值,在中,由勾股定理可求出CE的值,最后根据线段的和差关系即可得出答案【详解】解:,在中,由勾股定理得,米,(负值已舍去)米,在中,解析:5米【分析】在中,由勾股定
23、理可求出AC的值,在中,由勾股定理可求出CE的值,最后根据线段的和差关系即可得出答案【详解】解:,在中,由勾股定理得,米,(负值已舍去)米,在中,米(米)答:梯子顶端下滑0.5米【点睛】本题考查勾股定理的应用,在直角三角形里根据勾股定理,知道其中两边就可求出第三边,从而可求解19(1)答案见详解;(2)答案见详解【解析】【分析】(1)直接利用网格结合勾股定理得出符合题意的图形;(2)直接利用网格结合勾股定理得出符合题意的图形【详解】(1)如图所示:即为所求;解析:(1)答案见详解;(2)答案见详解【解析】【分析】(1)直接利用网格结合勾股定理得出符合题意的图形;(2)直接利用网格结合勾股定理得
24、出符合题意的图形【详解】(1)如图所示:即为所求;(2)如图所示:即为所求【点睛】本题考查了应用设计与作图,正确应用勾股定理是解题的关键20见解析【分析】先根据四边形是平行四边形且得到平行四边形是菱形,即可得到,再根据,证明四边形是平行四边形,即可得到平行四边形是矩形【详解】证明:四边形是平行四边形且平行四边形是菱形解析:见解析【分析】先根据四边形是平行四边形且得到平行四边形是菱形,即可得到,再根据,证明四边形是平行四边形,即可得到平行四边形是矩形【详解】证明:四边形是平行四边形且平行四边形是菱形,即又,四边形是平行四边形,平行四边形是矩形 【点睛】本题主要考查了平行四边形的判定,矩形的判定,
25、菱形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解21(1)1+;(2).【解析】【分析】参照范例中的方法进行解答即可.【详解】解:(1),;(2),.解析:(1)1+;(2).【解析】【分析】参照范例中的方法进行解答即可.【详解】解:(1),;(2),.22(1)5,14;(2)y=4x+2;(3)当k2.5时,到乙种子店花合算;当k=2.5时,个种子店花费的钱相同;k2.5时,到甲种子店花合算【分析】(1)结合函数图象与表格即可得出购买量为解析:(1)5,14;(2)y=4x+2;(3)当k2.5时,到乙种子店花合算;当k=2.5时,个种子店花费的钱相同;k2.5时,到甲种子店花
26、合算【分析】(1)结合函数图象与表格即可得出购买量为函数的自变量,再根据购买2千克花了10元钱即可得出m值,结合超过2千克部分的种子价格打8折可得出n值;(2)设当x2时,y关于x的函数解析式为y=ax+b,根据点的坐标利用待定系数法即可求出函数解析式;(3)当x=4时,分别求出两家店花费的钱即可【详解】解:(1)结合函数图象以及表格即可得出购买量是函数的自变量x,102=5,m=5,n=12+2=14故答案为:5;14;(2)设当x2时,y关于x的函数解析式为y=ax+b,将点(2.5,12)、(2,10)代入y=ax+b中,得:,解得,当x2时,y关于x的函数解析式为y=4x+2(3)x2
27、,当甲、乙两个种子店花费的钱相同时,44+2=4k,解得k=2.5,当k2.5时,到乙种子店花合算;当k=2.5时,两个种子店花费的钱相同;k2.5时,到甲种子店花合算【点睛】本题考查了一次函数的应用以及待定系数法求出函数解析式,观察函数图象找出点的坐标再利用待定系数法求出函数解析式是解题的关键23(1);(2)证明见解析;(3)【分析】(1)先利用等腰直角三角形的性质求解 再求解的面积,从而可得平行四边形的面积;(2)如图,延长交于点 先证明再证明 再结合平行四边形的性质可得:(3)解析:(1);(2)证明见解析;(3)【分析】(1)先利用等腰直角三角形的性质求解 再求解的面积,从而可得平行
28、四边形的面积;(2)如图,延长交于点 先证明再证明 再结合平行四边形的性质可得:(3)如图,过作,交的延长线于 过作 交于 先证明在上运动,作关于的对称点,连接,交于 确定三角形周长最小时的位置,再过作于 分别求解 再利用勾股定理求解即可.【详解】解:(1)是的中点, 设 解得: (负根舍去) , (2)如图,延长交于点 在中, (3)如图,过作,交的延长线于 过作 交于 等腰直角三角形 在上运动,如图,作关于的对称点,连接,交于 此时周长最短,过作于 由(2)得: 而 由(2)得: 是等腰直角三角形, 即的周长的最小值是【点睛】本题考查的是全等三角形的判定与性质,等腰直角三角形的性质,勾股定
29、理的应用,平行四边形的性质,轴对称的性质,动点的轨迹,灵活应用以上知识是解题的关键.24(1)2;(2)见解析;(3)x0;(4)1x1;(5)正方形;5【解析】【分析】(1)把x3代入y|x|1,即可求出m;(2)描点连线画出该函数的图象即可求解;(3)根据解析:(1)2;(2)见解析;(3)x0;(4)1x1;(5)正方形;5【解析】【分析】(1)把x3代入y|x|1,即可求出m;(2)描点连线画出该函数的图象即可求解;(3)根据图象即可解答;(4)画出函数y1|x|1的图象,根据图象即可得当y1y时,x的取值范围;(5)取b3,在同一平面直角坐标系中画出y2|x|3的图象,结合y1|x|
30、1的图象可得围成的四边形的形状是正方形,根据正方形的面积公式即可求解【详解】解:(1)把x3代入y|x|1,得m312,故答案为:2;(2)该函数的图象如图,(3)根据函数图象,当y随x的增大而增大时,x的取值范围是x0,故答案为:x0;(4)画出函数y1|x|1的图象如图,由图象得:当y1y时,x的取值范围为1x1,故答案为:1x1;(5)取b3,在同一平面直角坐标系中画出y2|x|3的图象,如图:由图象得:y1|x|1的图象与函数y|x|1的图象围成的四边形的形状是正方形,y2|x|3的图象与函数y|x|1的图象围成的四边形的形状是正方形,函数y2|x|b(b0)的图象与函数y|x|1的图
31、象围成的四边形的形状是正方形,y|x|1,y2|x|b(b0),y与y2的图象围成的正方形的对角线长为b1,该四边形的面积为18,(b1)218,解得:b5(负值舍去),故答案为:正方形,5【点睛】本题是一次函数综合题,考查了一次函数的图象与性质,一次函数图象上点的坐标特征,利用了数形结合思想正确画出函数的图象是解题的关键25(1)ADAB+DC;(2)ABAF+CF,证明详见解析;(3)ABDF+CF,证明详见解析【分析】(1)结论:ADAB+DC延长AE,DC交于点F,证明ABEFEC(AAS)解析:(1)ADAB+DC;(2)ABAF+CF,证明详见解析;(3)ABDF+CF,证明详见解
32、析【分析】(1)结论:ADAB+DC延长AE,DC交于点F,证明ABEFEC(AAS),即可推出ABCF,再证明DADF,即可解决问题(2)结论:ABAF+CF,如图,延长AE交DF的延长线于点G,证明方法类似(1)(3)结论;ABDF+CF如图,延长AE交CF的延长线于点G,证明方法类似(1)【详解】解:(1)探究问题:结论:ADAB+DC理由:如图中,延长AE,DC交于点F,ABCD,BAFF,在ABE和FCE中,CEBE,BAFF,AEBFEC,ABEFEC(AAS),CFAB,AE是BAD的平分线,BAFFAD,FADF,ADDF,DC+CFDF,DC+ABAD故答案为ADAB+DC(
33、2)方法迁移:结论:ABAF+CF证明:如图,延长AE交DF的延长线于点G,E是BC的中点,CEBE,ABDC,BAEG且BECE,AEBGECAEBGEC(AAS)ABGCAE是BAF的平分线BAGFAG,BAGG,FAGG,FAFG,CGCF+FG,ABAF+CF(3)联想拓展:结论;ABDF+CF证明:如图,延长AE交CF的延长线于点G,E是BC的中点,CEBE,ABCF,BAEG,在AEB和GEC中,AEBGEC,ABGC,EDFBAE,FDGG,FDFG,ABDF+CF【点睛】本题是四边形的综合问题,考查了全等三角形的判定与性质、等腰三角形的判定与性质、角平分线的性质、三角形三边关系
34、等知识点,解题的关键是学会添加常用辅助线,构造全等三角形解决问题26(1);(2)t=s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:或或或.【分析】(1)如图1中,作BHx轴于H证明COAAHB(AAS),可得BH=OA=1,AH=OC=2解析:(1);(2)t=s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:或或或.【分析】(1)如图1中,作BHx轴于H证明COAAHB(AAS),可得BH=OA=1,AH=OC=2,求出点B坐标,再利用待定系数法即可解决问题(2)利用平行四边形的性质求出点N的坐标,再求出AN,BM,CM即可解决问题(3)如图3中,当OB为菱形的边时,可
35、得菱形OBQP,菱形OBP1Q1菱形OBP3Q3,当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,分别求解即可解决问题【详解】(1)如图1中,作BHx轴于HA(1,0)、C(0,2),OA=1,OC=2,COA=CAB=AHB=90,ACO+OAC=90,CAO+BAH=90,ACO=BAH,AC=AB,COAAHB(AAS),BH=OA=1,AH=OC=2,OH=3,B(3,1),设直线BC的解析式为y=kx+b,则有,解得:,;(2)如图2中,四边形ABMN是平行四边形,ANBM,直线AN的解析式为:,B(3,1),C(0,2),BC=,t=s时,四边形ABM
36、N是平行四边形;(3)如图3中,如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1菱形OBP3Q3,连接OQ交BC于E,OEBC,直线OE的解析式为y=3x,由,解得:,E(,),OE=OQ,Q(,),OQ1BC,直线OQ1的解析式为y=-x,OQ1=OB=,设Q1(m,-),m2+m2=10,m=3,可得Q1(3,-1),Q3(-3,1),当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,易知线段OB的垂直平分线的解析式为y=-3x+5,由,解得:,Q2(,)综上所述,满足条件的点Q坐标为:或或或.【点睛】本题属于一次函数综合题,考查了平行四边形的判定和性质,菱形的判定和性质,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题