1、人教版八年级下册数学期末试卷培优测试卷一、选择题1要使式子在实数范围内有意义,则的取值范围是( )ABCD2下列满足条件的三角形中,不是直角三角形的是( )A三内角之比为123B三边长的平方之比为123C三边长之比为345D三内角之比为3453在四边形中,对角线,相交于点给出下列四组条件:,;,;,;,其中一定能判定这个四边形是平行四边形的条件有( )ABCD4某单位招聘项目经理,考核项目为个人形象、专业知识、策划能力,三个项目权重之比为2:3:5,某应聘者三个项目的得分依次为80,90,80,则他最终得分为()A79B83C85D875如图,在中,点D在边上,垂足为点F,交于点E,则的长为(
2、 )A2BCD6如图,在菱形ABCD中,A110,则CBD的度数是()A90B70C55D357如图,在四边形中,、分别是、的中点,若,则的面积为( )A60B48C30D158如图,在矩形ABCD中,ABn)满足方程组的解.(1)求证:ACAB;(2)若点D在直线AC上,且DB=DC,求点D的坐标;(3)在(2)的条件下,在直线BD上寻找点P,使以A、B、P三点为顶点的三角形是等腰三角形,请直接写出P点的坐标25定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径。(1)如图1,损矩形ABCD,ABCADC90,则该损矩形的直径是线段AC,同时我们还发
3、现损矩形中有公共边的两个三角形角的特点,在公共边的同侧的两个角是相等的。如图1中:ABC和ABD有公共边AB,在AB同侧有ADB和ACB,此时ADBACB;再比如ABC和BCD有公共边BC,在CB同侧有BAC和BDC,此时BACBDC。请再找一对这样的角来 (2)如图2,ABC中,ABC90,以AC为一边向形外作菱形ACEF,D为菱形ACEF的中心,连结BD,当BD平分ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由。(3)在第(2)题的条件下,若此时AB,BD,求BC的长。26如图正方形,点、分别在、上,与相交于点(1)如图1,当,求证:;平移图1中线段,使点与重合,点在延长线上,
4、连接,取中点,连接,如图2,求证:;(2)如图3,当,边长,则的长为_(直接写出结果)【参考答案】一、选择题1B解析:B【分析】根据负数没有平方根判断即可确定出的范围【详解】解:要使式子在实数范围内有意义,则需,即,则的取值范围是,故选:B【点睛】此题考查了二次根式有意义的条件,弄清二次根式性质是解本题的关键2D解析:D【分析】根据三角形内角和定理和勾股定理的逆定理判定是否为直角三角形【详解】A、设三个内角的度数为,根据三角形内角和公式,求得,所以各角分别为30,60,90,故此三角形是直角三角形;B、三边符合勾股定理的逆定理,所以是直角三角形;C、设三条边为,则有,符合勾股定理的逆定理,所以
5、是直角三角形;D、设三个内角的度数为,根据三角形内角和公式,求得,所以各角分别为45,60,75,所以此三角形不是直角三角形;故选D【点睛】本题考查了三角形内角和定理和勾股定理的逆定理的应用判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可3A解析:A【解析】【分析】根据平行四边形的判定方法分别判断得出即可【详解】解:如图,根据平行四边形的判定定理:两组对边分别平行的四边形是平行四边形,可知能判断这个四边形是平行四边形;根据平行四边形的判定定理:两组对边分别相等的四边形是平行四边形,可知能判断这个四边形是平行四边形;根据平行四边形的判定定理:两条对角线互相平分
6、的四边形是平行四边形,可知能判断这个四边形是平行四边形;根据平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形,可知不能判断这个四边形是平行四边形(例可能是等腰梯形);故给出的四组条件中,能判断这个四边形是平行四边形故选:【点睛】此题主要考查了平行四边形的判定方法;准确无误的掌握平行四边形的判定方法是解题关键4B解析:B【解析】【分析】根据加权平均数的定义列式计算即可【详解】解:他最终得分为=83(分)故选:B【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义5B解析:B【分析】连接DE,首先利用等腰三角形的性质,证明AE垂直平分BD,得出 再证明得出设则在Rt中利用勾
7、股定理列方程即可求得BE的长【详解】解:连接DE,如图, AE垂直平分BD, 在和中, 在Rt中, 设则 在Rt中, 解得,故选:B【点睛】本题考查的是等腰三角形的性质,线段的垂直平分线的性质、勾股定理、全等三角形的判定SSS,利用线段的垂直平分线的性质确定相等的线段,再根据勾股定理列方程是解决本题的关键线段垂直平分线的性质:线段垂直平分线上的点,到线段两个端点的距离相等6D解析:D【解析】【分析】根据菱形的性质得到ABDCBD,ADBC,根据平行线的性质求出ABC的度数,可进而求出CBD的度数【详解】解:四边形ABCD是菱形,ABDCBD,ADBC,A+ABC180,CBDABC,A110,
8、ABC180A18011070,CBD7035,故选:D【点睛】本题考查了菱形的性质、平行线的性质,解题的关键是熟练掌握菱形的对边互相平行,对角线平分一组对角7C解析:C【解析】【分析】连接BD,根据三角形中位线定理求出BD,根据勾股定理的逆定理得到BDC=90,然后求得面积即可【详解】解:连接BD,E、F分别是AB、AD中点,BD=2EF=12,CD2+BD2=25+144=169,BC2=169,CD2+BD2=BC2,BDC=90,SDBC=BDCD=125=30,故选:C【点睛】本题考查的是三角形中位线定理、勾股定理的逆定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的
9、关键8C解析:C【分析】过点P作PEAC于点E,根据AOP的边OA是一个定值,OA边上的高PE最大时是点P分别与点B和点D重合,因此根据这个规律可以对各个选项作出判断【详解】A、过点P作PEAC于点E,当点P在AB和BC边上运动时,PE逐渐增大,到点B时最大,然后又逐渐减小,到点C时为0,而y=中,OA为定值,所以y是先增大后减小,在B点时面积最大,在C点时面积最小; 观察图知,当点P与点B重合时,AOP的的面积为3,此时矩形的面积为:43=12,故选项A正确;B、观察图知,当运动路程为7时,y的值为0,此时点P与点C重合,所以有AB+BC=7,又ABBC=12,解得:AB=3,BC=4,或A
10、B=4,BC=3,但ABBC,所以AB=3,BC=4,根据四边形ABCD为矩形,所以AD=4,故选项B正确; C、当x=2.5时,即x3,点P在边AB上由勾股定理,矩形的对角线为5,则OA=2.5,所以OA=AP,AOP是等腰三角形,但ABC是三边分别为3,4,5的直角三角形,故BAC不可能为60,从而AOP不是等边三角形,故选项C错误;D、当点P在AB和BC边上运动时,点P与点B重合时最大面积为3,此时x的值为3;当点P在边CD和DA上运动时,PE逐渐增大,到点D时最大,然后又逐渐减小,到点A时为0,而y=也是先增大再减小,在D点时面积最大,在A点时面积最小;所以当点P与点D重合时,最大面积
11、为3,此时点P运动的路程为AB+BC+CD=10,即x=10,所以当x=3或10时,AOP的面积为3,故选项D正确故选:C【点睛】本题是动点问题的函数图象,考查了函数的图象、图形的面积、矩形的性质、解方程等知识,关键是确定点P到AC的距离的变化规律,从而可确定y的变化规律,同时善于从函数图象中抓住有用的信息,获得问题的突破口二、填空题9【解析】【分析】根据二次根式有意义的条件可求得x,然后求得y,最后求平方根即可【详解】解:是实数,且满足,并且,解得,此时,其平方根是故答案为:【点睛】本题考查二次根式有意义的条件,求一个数的平方根,二次根式的化简,理解二次根式有意义被开方数非负是解题关键10A
12、解析:96【解析】【分析】根据菱形的性质可得ACBD,然后利用勾股定理求出OB8cm,得出BD16cm,最后根据菱形的面积公式求解【详解】解:四边形ABCD为菱形,ACBD,OAOCAC6cm,OBOD,OB8(cm),BD2OB16cm,S菱形ABCDACBD121696(cm2)故答案为:96【点睛】本题主要考查菱形的性质,熟练掌握菱形的性质是解题的关键11或5【解析】【分析】根据斜边分类讨论,然后利用勾股定理分别求出c的值即可【详解】解:若b是斜边长根据勾股定理可得:若c是斜边长根据勾股定理可得:综上所述:或5故答案为:或5【点睛】此题考查的是勾股定理,掌握用勾股定理解直角三角形和分类讨
13、论的数学思想是解决此题的关键12B解析:34【分析】由矩形的性质可得BAE=E=90,由HL可证RtACDRtAED,可得EAD=CAD=28,即可求解【详解】解:四边形ABDE是矩形,BAE=E=90,ADE=62,EAD=28,ACCD,C=E=90AE=AC,AD=AD,RtACDRtAED(HL)EAD=CAD=28,BAF=90-28-28=34,故答案为:34【点睛】本题考查了矩形的性质,全等三角形的判定和性质,灵活运用这些性质进行推理是本题的关键13【解析】【分析】设一次函数解析式为y=kx+b,先把(0,-2)代入得b=-2,再利用两直线平行的问题得到k=-3,即可得到一次函数
14、解析式【详解】解:设一次函数解析式为y=kx+b,把(0,-2)代入得b=-2,直线y=kx+b与直线y=2-3x平行,k=-3,一次函数解析式为y=-3x-2故答案为:y=-3x-2【点睛】本题考查两直线相交或平行的问题:若两条直线是平行的关系,那么它们的自变量系数相同,即k值相同14D解析:【分析】根据菱形的性质可得,从而可得即为所添加的条件;理由:先根据等腰三角形的判定与性质可得点D是BC的中点,再根据三角形中位线定理、线段中点的定义可得,然后根据菱形的判定即可得【详解】点分别是边的中点要使四边形是菱形,则需,即理由如下:是等腰三角形点D是BC的中点是的两条中位线又四边形是菱形故答案为:
15、【点睛】本题考查了等腰三角形的判定与性质、菱形的判定与性质、三角形中位线定理等知识点,掌握理解三角形中位线定理是解题关键15(0,)【分析】把x=0和y=0分别代入y=x+1,求出A,B两点的坐标,过D作DE垂直于x轴,证DEAAOB,证出OA=DE,AE=OB,即可求出D的坐标;先作出D关于y轴的对称点D,解析:(0,)【分析】把x=0和y=0分别代入y=x+1,求出A,B两点的坐标,过D作DE垂直于x轴,证DEAAOB,证出OA=DE,AE=OB,即可求出D的坐标;先作出D关于y轴的对称点D,连接CD,CD与y轴交于点M,则MD=MD,求出D的坐标,进而求出CD的解析式,即可求解【详解】解
16、:y=x+1,当x=0时,y=1,当y=0时,x=-2,点A的坐标为(-2,0)、B的坐标为(0,1),OA=2,OB=1,由勾股定理得:AB=,过D作DE垂直于x轴,四边形ABCD是正方形,DEA=DAB=AOB=90,AD=AB=CD=,DAE+BAO=90,BAO+ABO=90,DAE=ABO,在DEA与AOB中,DEAAOB(AAS),OA=DE=2,AE=OB=1,OE=3, 所以点D的坐标为(-3,2),同理:点C的坐标为(-1,3),作D关于y轴的对称点D,连接CD,CD与y轴交于点M,MD=MD,MD+MC=MD+MC,此时MD+MC取最小值,点D(-3,2)关于y轴的对称点D
17、坐标为(3,2),设直线CD解析式为y=kx+b,把C(-1,3),D(3,2)代入得:,解得:,直线CD解析式为y=x+,令x=0,得到y=,则M坐标为(0,)故答案为:(0,)【点睛】本题主要考查了一次函数图象上点的坐标特征,一次函数的性质,能求与x轴y轴的交点坐标和理解有关最小值问题是解本题的关键,难点是理解MD+MC的值最小如何求16【分析】当8t20时,设s=kt+b,将(8,960)、(20,1800)代入求得s=70t+400,求出t=15时s的值,从而得出答案【详解】解:当8t20时,设s=kt+b,解析:【分析】当8t20时,设s=kt+b,将(8,960)、(20,1800
18、)代入求得s=70t+400,求出t=15时s的值,从而得出答案【详解】解:当8t20时,设s=kt+b,将(8,960)、(20,1800)代入,得:,解得:,s=70t+400;当t=15时,s=1450,18001450=350,当小明从家出发去学校步行15分钟时,到学校还需步行350米故答案为:350【点睛】本题主要考查一次函数的应用,解题的关键是理解题意,从实际问题中抽象出一次函数的模型,并熟练掌握待定系数法求一次函数的解析式三、解答题17(1)1+(2)(3)(4)0【分析】(1)利用多项式乘以多项式展开,然后合并即可;(2)把二次根式相乘化为最简二次根式即可;(3)把二次根式化为
19、最简二次根式即可;(4)先把二次根式化为解析:(1)1+(2)(3)(4)0【分析】(1)利用多项式乘以多项式展开,然后合并即可;(2)把二次根式相乘化为最简二次根式即可;(3)把二次根式化为最简二次根式即可;(4)先把二次根式化为最简二次根式,然后合并即可【详解】解:(1)(1)(2)=2-+2-3,=1+(2)()=,=(3)=(4)=0【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的加减乘除运算,再合并即可在二次根式的混合运算中,要结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径18米【分析】先在中,利用勾股定理出的长,再根据线段的和差可得的
20、长,然后在中,利用勾股定理求出的长,最后根据即可得出答案【详解】解:由题意得:,在中,则,在中,则,答:梯子的底解析:米【分析】先在中,利用勾股定理出的长,再根据线段的和差可得的长,然后在中,利用勾股定理求出的长,最后根据即可得出答案【详解】解:由题意得:,在中,则,在中,则,答:梯子的底端将向外移米【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题关键19(1)见详解;(2)见详解;(3)见详解【解析】【分析】(1)先根据以AB为边ABC是轴对称图形,得出ABC为等腰三角形,AB长为3,画以AB为腰的等腰直角三角形即可;(2)先根据勾股解析:(1)见详解;(2)见详解;(3)见详解【解
21、析】【分析】(1)先根据以AB为边ABC是轴对称图形,得出ABC为等腰三角形,AB长为3,画以AB为腰的等腰直角三角形即可;(2)先根据勾股定理求出AB的长,利用平移画出点C即可;(3)先求出以AB为底等腰直角三角形腰长AC=,利用平移作出点C即可【详解】解:(1)以AB为边ABC是轴对称图形,ABC为等腰三角形,AB长为3,画以AB为直角边,点B为直角顶点ABC如图也可画以AB为直角边,点A为直角顶点ABC如图;(2)根据勾股定理AB=,AB为一腰画等腰三角形,另一腰为,以点A为顶角顶点根据勾股定理构建横1竖3,或横3竖1;点A向左1格再向下平移3格得C1,连结AC1,C1B,得等腰ABC1
22、,点A向右3格再向上平移1格得C2,连结AC2,BC2,得等腰ABC2,点A向右3格再向下平移1格得C3,连结AC3,BC3,得等腰ABC3, 点B向右3格再向上平移1格得C4,连结AC4,BC4,得等腰ABC4,点B向右3格再向下平移1格得C5,连结AC5,BC5,得等腰ABC5,点B向右1格再向上平移3格得C6,连结AC6,BC6,得等腰ABC6; (3)AB为底边画等腰三角形,等腰直角三角形腰长为m,根据勾股定理,即,解得,根据勾股定理AC=,横1竖2,或横2竖1得图形,点A向右平移2格,再向下平移1格得点C1,连结AC1,BC1,得等腰三角形ABC1,点A向左平移1格,再向下平移2格得
23、点C2,连结AC2,BC2,得等腰三角形ABC2【点睛】本题考查网格作图,图形平移性质,勾股定理应用,等腰直角三角形性质,轴对称性质,掌握网格作图,图形平移性质,勾股定理应用,等腰直角三角形性质,轴对称性质是解题关键20,见解析【分析】根据题意和图形,可以在空格处填一个条件,注意填写的条件不唯一,只要可以证明结论成立即可,然后根据菱形的判定方法证明即可【详解】补充条件:ABBC,证明:连接BD交AC于解析:,见解析【分析】根据题意和图形,可以在空格处填一个条件,注意填写的条件不唯一,只要可以证明结论成立即可,然后根据菱形的判定方法证明即可【详解】补充条件:ABBC,证明:连接BD交AC于点O,
24、如图所示,四边形ABCD是平行四边形,OBOD,OAOC,AECF,OEOF,四边形EBFD是平行四边形,ABBC,BAEBCF,在BAE和BCF中,BAEBCF(SAS),BEBF,平行四边形EBFD是菱形,即四边形EBFD为菱形故答案为:ABBC【点睛】本题考查菱形的判定、平行四边形的性质、全等三角形的判定与性质,利用数形结合的思想解答是解答本题的关键21(1);(2)或 ;或【解析】【分析】根据近似公式计算出近似值的过程和方法计算的近似值和确定a和r的值.【详解】(1)根据近似公式可知:故答案为;(2) 整理,解析:(1);(2)或 ;或【解析】【分析】根据近似公式计算出近似值的过程和方
25、法计算的近似值和确定a和r的值.【详解】(1)根据近似公式可知:故答案为;(2) 整理, 解得: 或 或 故答案为或 ;或【点睛】本题考查二次根式的估算,审清题意,根据题目所给的近似公式计算是解题关键.22(1)y115x+3000;(2)250件【分析】(1)根据函数图象中的数据可以求得y1的函数关系式;(2)根据函数图象中的数据求出修改后的薪酬计算方式为y2的函数关系式,用y2y175解析:(1)y115x+3000;(2)250件【分析】(1)根据函数图象中的数据可以求得y1的函数关系式;(2)根据函数图象中的数据求出修改后的薪酬计算方式为y2的函数关系式,用y2y1750,得出结果【详
26、解】解:(1)设y1kx+3000,将(100,4500)代入得:4500100k+3000,解得k15,y1关于x的函数表达式为y115x+3000;(2)设y2mx,将(100,3000)代入得:3000100m,解得m30,y230x,所得的薪酬比原有的薪酬计算方式算出的薪酬多750元,y2y1750,即30x(15x+3000)750,解得x250,答:王小姐该月的销售量为250件【点睛】本题考查了一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用函数的性质解答23(1)y=-x+6;(2);,或或,【分析】(1)先求出点A,B的坐标,再运用待定系数法求出直线直线l2
27、的函数解析式;(2)将点D(-2,m)代入y=x+6中,求出D(-2,4),如图2解析:(1)y=-x+6;(2);,或或,【分析】(1)先求出点A,B的坐标,再运用待定系数法求出直线直线l2的函数解析式;(2)将点D(-2,m)代入y=x+6中,求出D(-2,4),如图2,作DHF=45,利用AAS证明ADEHFD,再运用等腰直角三角形性质即可求出答案;将D(-1,n)代入y=x+6中,得D(-1,5),过D作DMx轴于M,作FNDM于N,如图3,利用AAS可证得FDNDEM,进而得出F(4,6),再根据DGF=DGO分类讨论即可【详解】解:(1)交轴于点,交轴于点,与关于轴对称,设直线为:
28、,将、坐标代入得,解得,直线的函数解析式为:;(2)将点代入中,得:,解得:,如图2,作,在和中,又,和均为等腰直角三角形,是等腰直角三角形,将代入中,得:,则,过作轴于,作于,如图3,在和中,当点、三点共线时,如图3,设直线的解析式为,解得:,直线的解析式为,当时,;如图4,连接DG2,FG2,过点D作DMOG2,DNFG2,DM=DN,又DO=DF,(HL),ODM=FDN,又ODN+FDN=90,ODM+ODN=90,即MDN=90,四边形DMG2N是正方形,OG2F=90,设,解得:,;当平分时,如图5,又,设与交于点,设直线解析式为,解得:,直线解析式为,联立方程组,解得:,;综上所
29、述,符合条件的的坐标为,或或,【点睛】本题是一次函数综合题,考查了运用待定系数法求一次函数解析式,求一次函数图象与坐标轴交点坐标,利用解方程组求两直线交点坐标,等腰直角三角形判定和性质,全等三角形判定和性质,勾股定理等,添加辅助线构造全等三角形,运用分类讨论思想和数形结合思想是解题关键24(1)见解析;(2);(3)点P的坐标为:(3,0),(,2),(3,3),(3,3+)【解析】【分析】(1)先解方程组得出m和n的值,从而得到B,C两点坐标,结合A点坐标算出AB2,解析:(1)见解析;(2);(3)点P的坐标为:(3,0),(,2),(3,3),(3,3+)【解析】【分析】(1)先解方程组
30、得出m和n的值,从而得到B,C两点坐标,结合A点坐标算出AB2,BC2,AC2,利用勾股定理的逆定理即可证明;(2)过D作DFy轴于F,根据题意得到BF=FC,F(0,1),设直线AC:y=kx+b,利用A和C的坐标求出表达式,从而求出点D坐标;(3)分AB=AP,AB=BP,AP=BP三种情况,结合一次函数分别求解.【详解】解:(1),得:,B(0,3),C(0,1),A(,0),B(0,3),C(0,1),OA=,OB=3,OC=1,AB2=AO2+BO2=12,AC2=AO2+OC2=4,BC2=16AB2+AC2=BC2,BAC=90,即ACAB;(2)如图1中,过D作DFy轴于FDB
31、=DC,DBC是等腰三角形BF=FC,F(0,1),设直线AC:y=kx+b,将A(,0),C(0,1)代入得:直线AC解析式为:y=x-1,将D点纵坐标y=1代入y=x-1,x=-2,D的坐标为(2,1);(3)点P的坐标为:(3,0),(,2),(3,3),(3,3+)设直线BD的解析式为:y=mx+n,直线BD与x轴交于点E,把B(0,3)和D(2,1)代入y=mx+n,解得,直线BD的解析式为:y=x+3,令y=0,代入y=x+3,可得:x=,OB=3,BE=,BEO=30,EBO=60AB=,OA=,OB=3,ABO=30,ABE=30,当PA=AB时,如图2,此时,BEA=ABE=
32、30,EA=AB,P与E重合,P的坐标为(3,0),当PA=PB时,如图3,此时,PAB=PBA=30,ABE=ABO=30,PAB=ABO,PABC,PAO=90,点P的横坐标为,令x=,代入y=x+3,y=2,P(,2),当PB=AB时,如图4,由勾股定理可求得:AB=2,EB=6,若点P在y轴左侧时,记此时点P为P1,过点P1作P1Fx轴于点F,P1B=AB=2,EP1=62,FP1=3,令y=3代入y=x+3,x=3,P1(3,3),若点P在y轴的右侧时,记此时点P为P2,过点P2作P2Gx轴于点G,P2B=AB=2,EP2=6+2,GP2=3+,令y=3+代入y=x+3,x=3,P2
33、(3,3+),综上所述,当A、B、P三点为顶点的三角形是等腰三角形时,点P的坐标为(3,0),(,2),(3,3),(3,3+)【点睛】本题考查了解二元一次方程组,勾股定理的逆定理,含30的直角三角形,等腰三角形的性质,一次函数的应用,知识点较多,难度较大,解题时要注意分类讨论.25(1)ABD=ACD;(2)四边形ACEF为正方形,理由见解析;(3)5.【解析】【分析】(1)以AD为公共边,有ABD=ACD;(2)证明ADC是等腰直角三角形,得AD=CD,则解析:(1)ABD=ACD;(2)四边形ACEF为正方形,理由见解析;(3)5.【解析】【分析】(1)以AD为公共边,有ABD=ACD;
34、(2)证明ADC是等腰直角三角形,得AD=CD,则AE=CF,根据对角线相等的菱形是正方形可得结论;(3)如图2,作辅助线构建直角三角形,证明ABCCHE,得CH=AB=3,根据平行线等分线段定理可得BG=GH=4,从而得结论.【详解】解:(1)由图1得:ABD和ADC有公共边AD,在AD同侧有ABD和ACD,此时ABD=ACD;(2)四边形ACEF为正方形,理由是:ABC=90,BD平分ABC,ABD=CBD=45DAC=CBD=45四边形ACEF是菱形,AELCF,ADC=90,ADC是等腰直角三角形,AD=CD,.AE=CF,菱形ACEF是正方形;(3)如图2,过D作DGBC于G,过E作
35、EHBC,交BC的延长线于H,DBG=45,BDG是等腰直角三角形,BD=4,BG=4,四边形ACEF是正方形,AC=CE,ACE=90,AD=DE,易得ABCCHE,CH=AB=3,AB/DG/EH,AD=DE,BG=GH=4,CG=4-3=1,BC=BG+CG=4+1=5.【点睛】本题是四边形的综合题,也是新定义问题,考查了损矩形和损矩形的直径的概念,平行线等分线段定理,菱形的性质,正方形的判定等知识,认真阅读理解新定义,第3问有难度,作辅助线构建全等三角形是关键.26(1)见解析;见解析;(2)【分析】(1)过点D作DM/GH交BC的延长线于点M,如图1,可证得四边形DGHM是平行四边形
36、,进而可证ADECDM(AAS),即可证得结论;在BC解析:(1)见解析;见解析;(2)【分析】(1)过点D作DM/GH交BC的延长线于点M,如图1,可证得四边形DGHM是平行四边形,进而可证ADECDM(AAS),即可证得结论;在BC上截取BN=BE,如图2,则BEH是等腰直角三角形,由ADECDH,利用全等三角形性质和正方形性质即可得出结论;(2)如图3,过点D作DN/GH交BC于点N,则四边形GHND是平行四边形,作ADM=CDN,DM交BA延长线于M,利用AAS证明ADMCDN,设AE=x,则BE=3-x,运用勾股定理建立方程求解即可【详解】解:(1)过点D作DM/GH交BC的延长线于点M,如图1,四边形ABCD是正方形,ADBC,ADC=90,又DMGH,四边形DGHM是平行四边形,GH=DM,GD=MH,GOD=MDE=90,MDC+EDC=90,ADE+E