资源描述
人教版数学八年级下册数学期末试卷培优测试卷
一、选择题
1.式子在实数范围内有意义,则x的取值范围是( )
A.x<3 B.x≥3 C.x≤3 D.x>3
2.下列各组数中,不能构成直角三角形的是( )
A.9、12、15 B.12、18、22 C.8、15、17 D.5、12、13
3.下列条件不能判定四边形是平行四边形的是( )
A. B. C. D.
4.一组数据2,x,4,3,3的平均数为3,则中位数为( )
A.2 B.2.5 C.4 D.3
5.如图所示,一个圆柱体高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程 取是( )
A.12cm B.10cm
C.20cm D.无法确定
6.如图,将一个等腰直角三角形△ABC按如图方式折叠,若DE=a,DC=b,下列四个结论:①平分∠BDE;②BC长为2a+b;③△是等腰三角形;④△CED的周长等于BC的长.其中,正确的是( )
A.①②④ B.②③④ C.②③ D.②④
7.如图,在直角三角形ABC中,∠C=90°,AB=10,AC=8,点E,F分别为AC和AB的中点,则EF= ( )
A.3 B.4 C.5 D.6
8.如图,甲、丙两地相距500km,一列快车从甲地驶往丙地,途中经过乙地;一列慢车从乙地驶往丙地,两车同时出发,同向而行,折线ABCD表示两车之间的距离y(km)与慢车行驶的时间为x(h)之间的函数关系.根据图中提供的信息,下列说法不正确的是( )
A.甲、乙两地之间的距离为200 km B.快车从甲地驶到丙地共用了2.5 h
C.快车速度是慢车速度的1.5倍 D.快车到达丙地时,慢车距丙地还有50 km
二、填空题
9.若在实数范围内有意义,则实数的取值范围是___________.
10.已知菱形的边长为4,∠A=60°,则菱形的面积为_________.
11.如图,在中,垂直平分交于点,若,,则_________________.
12.如图,矩形ABCD中,对角线AC、BD相交于点O,若OB=2,∠ACB=30°,则AB的长度为____.
13.经过点(2,0)且与坐标轴围成的三角形面积为2的直线解析式是__________________.
14.如图,在ABC中,点D、E、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA,下列四种说法:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是菱形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AB=AC,那么四边形AEDF是菱形.其中,正确的有_____.(只填写序号)
15.如图,在平面直角坐标系中,点,都在轴正半轴上,点,都在直线上,,,都是等边三角形,且,则点的横坐标是_______.
16.如图,在矩形中,,点是边上(不与、重合)一个动点,连接,把沿直线折叠,点落在点处,当 为直角三角形时,则 的周长为________.
三、解答题
17.计算:
(1)2+-;
(2);
(3);
(4)│1-│+(2019-50)0-(-).
18.如图,货船和快艇分别从码头A同时出发.其中,货船沿着北偏西54°方向以15海里/小时的速度匀速航行,快艇沿着北偏东36°方向以36海里/小时的速度航行,1小时后.两船分别到达B、C点.求B、C两点之间的距离.
19.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点,网格中有以格点A、B、C为顶点的,请你根据所学的知识回答下列问题:
(1)判断的形状,并说明理由:
(2)求的面积.
20.如图(1),中,,,的外角平分线交于点,过点分别作直线,的垂线,,为垂足.
(1)求证:四边形是正方形.
(2)若已知,,请求的面积;
(3)如图(2),连接,与,分别交于点,,求证:.
21.阅读下列材料,然后回答问题:
在进行类似于二次根式的运算时,通常有如下两种方法将其进一步化简:
方法一:
方法二:
(1)请用两种不同的方法化简:;
(2)化简:.
22.某市出租车收费标准分白天和夜间分别计费,计费方案见下列表格及图象(其中,,为常数)
行驶路程
收费标准
白天
夜间(22时至次日5时)
不超过的部分
起步价6元
起步价元
超过不超出的部分
每公里2元
每公里元
超出的部分
每公里3元
每公里元
设行驶路程为时,白天的运价为(元),夜间的运价为(元).如图,折线表示与之间的函数关系式,线段表示当时,与的函数关系式,根据图表信息,完成下列各题:
(1)填空:______,______,______;
(2)当时,求的函数表达式;
(3)若幸福小区到阳光小区的路程为,小明从幸福小区乘出租车去阳光小区,白天收费比夜间收费少多少元?
23.在正方形中,点是边上任意一点,连接过点作于,交于.
如图1,过点作于.求证:;
如图2,点为的中点,连接,试判断存在什么数量关系并说明理由;
如图3,,连接,点为的中点,在点从点运动到点的过程中,点随之运动,请直接写出点运动的路径长.
24.[模型建立]如图等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E,易证明△BEC≌△CDA.(无需证明),我们将这个模型称为“K形图”.接下来我们就利用这个模型来解决一些问题:
[模型运用]
(1)如图1,若AD=2,BE=5,则△ABC的面积为 ;
(2)如图2,在平面直角坐标系中,等腰Rt△ACB,∠ACB=90°,AC=BC,点C的坐标为(0,﹣2),A点的坐标为(4,0),求AB与y轴交点D的坐标;
(3)如图3,在平面直角坐标系中,直线l函数关系式为:y=2x+1,点A(3,2),在其线l上是否存在点B,使直线AB与直线l的夹角为45°?若存在,求出点B的坐标;若不存在,请说明理由.
[模型拓限](4)如图4,在平面直角坐标系中,已知点B(0,4),P是直线y=2x﹣5上一点,将线段BP延长至点Q,使BQ=BP,将线段BQ绕点B顺时针旋转45°后得BA,直接写出OA的最小值为 .(≈3.2,结果精确到0.1)
25.已知中,.点从点出发沿线段移动,同时点从点出发沿线段的延长线移动,点、移动的速度相同,与直线相交于点.
(1)如图①,当点为的中点时,求的长;
(2)如图②,过点作直线的垂线,垂足为,当点、在移动的过程中,设,是否为常数?若是请求出的值,若不是请说明理由.
(3)如图③,E为BC的中点,直线CH垂直于直线AD,垂足为点H,交AE的延长线于点M;直线BF垂直于直线AD,垂足为F;找出图中与BD相等的线段,并证明.
26.如图1,若是的中位线,则,解答下列问题:
(1)如图2,点是边上一点,连接、
①若,则 ;
②若,,连接,则 , , .
(2)如图3,点是外一点,连接、,已知:,,,求的值;
(3)如图4,点是正六边形内一点,连接、、,已知:,,,求的值.
【参考答案】
一、选择题
1.B
解析:B
【分析】
直接利用二次根式有意义的条件分析得出答案.
【详解】
解:式子在实数范围内有意义,故x﹣3≥0,
则x的取值范围是:x≥3.
故选:B.
【点睛】
考核知识点:二次根式的意义.理解二次根式被开方数是非负数.
2.B
解析:B
【分析】
欲判断能否构成直角三角形,只需验证两小边的平方和是否等于最长边的平方.
【详解】
解:A、92+122=152,能构成直角三角形;
B、122+182≠222,不能构成直角三角形;
C、82+152=172,能构成直角三角形;
D、52+122=132,能构成直角三角形.
故选:B.
【点睛】
本题考查了利用勾股定理逆定理判定直角三角形的方法.在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
3.C
解析:C
【解析】
【分析】
根据平行四边形的判定逐一判断即可.
【详解】
解:A.由AD=BC,AB=CD可根据两组对边分别相等的四边形是平行四边形知四边形ABCD是平行四边形,此选项不符合题意;
B.由∠A=∠C,∠B=∠D可根据两组对角分别相等的四边形是平行四边形知四边形ABCD是平行四边形,此选项不符合题意;
C.由AB∥CD,BC=AD不能判定四边形ABCD是平行四边形,此选项符合题意;
D.由AD∥BC知∠A+∠B=180°,结合∠B=∠D知∠A+∠D=180°,
所以AB∥CD,
此时可根据两组对边分别平行的四边形是平行四边形知四边形ABCD是平行四边形,此选项不符合题意;
故选:C.
【点睛】
本题主要考查平行四边形的判定,解题的关键是掌握两组对边分别平行的四边形是平行四边形、两组对边分别相等的四边形是平行四边形、一组对边平行且相等的四边形是平行四边形.
4.D
解析:D
【解析】
【分析】
先根据平均数的定义求出x的值,再根据中位数的定义进行解答即可.
【详解】
解:∵数据2,x,4,3,3的平均数是3,
∴(2+x+4+3+3)÷5=3,
∴x=3, 把这组数据从小到大排列为:2,3,3,3,4, 则这组数据的中位数为3;
故选D.
【点睛】
本题主要考查了平均数和中位数,掌握平均数的计算公式和中位数的定义是解题的关键.
5.B
解析:B
【分析】
先将图形展开,根据两点之间,线段最短,利用根据勾股定理即可得出结论.
【详解】
解:如图所示:沿AC将圆柱的侧面展开,
底面半径为2cm,
,
在中,
,,
.
故答案为:B.
【点睛】
本题考查的是平面展开,最短路径问题,立方体的展开图,两点之间线段最短,勾股定理的应用的有关知识.解题的关键是综合运用以上知识解决问题.
6.B
解析:B
【解析】
【分析】
根据折叠的性质可得出∠DBC=22.5°,△DEC和△DEC'均是等腰直角三角形,结合选项所述即可判断出正确与否.
【详解】
(1)由折叠的性质得,∠BDC′=22.5°,∠C′DE=∠CDE=45°,
∴DC′不平分∠BDE故①错误;
(2)由折叠性质可得DE=AD=EC=EC′=a,AC=AB=BE=a+b
∴BC=EB+EC=a+b+a=2a+b,故②正确;
(3)∵∠ABC=2∠DBC,
∴∠DBC=22.5°,∠DC′C=∠DCB=45°=∠DBC′+∠BDC′,
∴∠DBC′=∠BDC′=22.5°,
∴BC′=DC′,故③正确;
(4)由折叠的性质可得出△DEC和△DEC'均是等腰直角三角形,
又∵BC′=DC′,
∴△CED的周长=CE+DE+CD=CE+C′E+BC′=BC,故④正确.
综上可得②③④正确,共三个.
故选:B.
【点睛】
本题考查了折叠的性质,注意掌握折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,难度一般.
7.A
解析:A
【解析】
【详解】
∵直角三角形ABC中,∠C=90°,AB=10,AC=8,
∴.
∵点E、F分别为AC、AB的中点,
∴EF是△ABC的中位线,
∴.
故选A.
8.C
解析:C
【分析】
根据两车同时出发,同向而行,所以点A即为甲、乙两地的距离;图中点B为y=0,即快慢两车的距离为0,所以B表示快慢两车相遇的时间;由图像可知慢车走300km,用了3小时,可求出慢车的速度,进而求出快车的速度;点C的横坐标表示快车走到丙地用的时间,根据快车与慢车的速度,可求出点C的坐标
【详解】
A、由图像分析得,点A即为甲、乙两地的距离,即甲、乙两地之间的距离为选项A是正确
BC、由图像可知慢车走300km,用了3小时,则慢车的速度为100km/h,因为1h快车比慢车多走100km,故快车速度为200km/h,所以快车从甲地到丙地的时间=500200=2.5h,故选项B是正确的,快车速度是慢车速度的两倍,故选项C是错误的
D、快车从甲地驶到丙地共用了2.5h,即点C的横坐标2.5,则慢车还剩0.5h才能到丙地,距离=0.5100=50km,故快车到达丙地时,慢车距丙地还有50km,选项D是正确的
故正确答案为C
【点睛】
此题主要根据实际问题考查了一次函数的应用,解决此题的关键是根据函数图像,读懂题意,联系实际的变化,明确横轴和纵轴表示的意义
二、填空题
9.
【解析】
【分析】
根据二次根式有意义的条件可直接进行求解.
【详解】
解:∵在实数范围内有意义,
∴,
∴;
故答案为.
【点睛】
本题主要考查二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.
10.A
解析:8
【解析】
【分析】
作出图形,利用30°直角三角形的性质求出高,利用菱形的面积公式可求解.
【详解】
如图所示,菱形ABCD中,AB=AD=4,∠A=60°,
过点D作DE⊥AB于点E,
则,
∴菱形ABCD的面积为AB∙DE=4×= ,
故答案为:.
【点睛】
本题考查了菱形的性质,熟练运用30°直角三角形的性质以及菱形的面积公式是本题的关键.
11.
【解析】
【分析】
由勾股定理得到的长度,利用等面积法求,结合已知条件得到答案.
【详解】
解:
垂直平分
,
故答案为:.
【点睛】
本题考查的是勾股定理的应用,等面积法的应用,掌握以上知识是解题的关键.
12.A
解析:2
【分析】
利用矩形的性质即可得到的长,再根据含30°角的直角三角形的性质,即可得到的长.
【详解】
解:∵矩形ABCD中,对角线AC、BD相交于点O,
∴AC=2BO=4,
又∵∠ACB=30°,∠ABC=90°,
∴.
故答案为:.
【点睛】
本题考查了矩形的性质及含角的直角三角形的性质,掌握矩形四个角都是直角,对角线相等且互相平分是解题的关键.
13.y=x-2或y=-x+2
【分析】
设直线解析式为y=kx+b,先把(2,0)代入得b=-2k,则有y=kx-2k,再确定直线与y轴的交点坐标为(0,-2k),然后根据三角形的面积公式得到×2×|-2k|=2,解方程得k=1或-1,于是可得所求的直线解析式为y=x-2或y=-x+2.
【详解】
设直线解析式为y=kx+b,
把(2,0)代入得2k+b=0,解得b=−2k,
所以y=kx−2k,
把x=0代入得y=kx−2k得y=−2k,
所以直线与y轴的交点坐标为(0,−2k),
所以×2×|−2k|=2,解得k=1或−1,
所以所求的直线解析式为y=x−2或y=−x+2.
故答案为:y=x−2或y=−x+2.
【点睛】
本题考查一次函数图象上点的坐标特征.
14.D
解析:①③
【分析】
根据平行四边形的判定和菱形的判定解答即可.
【详解】
解:∵DE∥CA,DF∥BA,∴四边形AEDF是平行四边形,故①正确;
∵∠BAC=90°,四边形AEDF是平行四边形,
∴四边形AEDF是矩形,故②错误;
∵AD平分∠BAC,四边形AEDF是平行四边形,
∴四边形AEDF是菱形,故③正确;
∵AB=AC,四边形AEDF是平行四边形,
不能得出AE=AF,故四边形AEDF不一定是菱形,故④错误;
故答案为:①③.
【点睛】
此题考查菱形的判定,关键是就平行四边形的判定和菱形的判定解答.
15.【分析】
设△的边长为,根据直线的解析式得出,再结合等边三角形的性质及外角的性质即可得出,,从而得出,由点的坐标为,得到,,,,,,即可解决问题.
【详解】
解:过作轴于,过作轴于,过作轴于,如图
解析:
【分析】
设△的边长为,根据直线的解析式得出,再结合等边三角形的性质及外角的性质即可得出,,从而得出,由点的坐标为,得到,,,,,,即可解决问题.
【详解】
解:过作轴于,过作轴于,过作轴于,如图所示:
设△的边长为,
则,,,
,,,,
,,
点,,,是直线上的第一象限内的点,
,
,
又△为等边三角形,
,
,,
,
,
点的坐标为,
,,,,,
,
,
点的横坐标为,
故答案为:.
【点睛】
本题考查了一次函数的性质、等边三角形的性质、规律型、以及三角形外角的性质等,解题的关键是找出规律.
16.或
【分析】
由矩形的性质和折叠的性质可得,分两种情况讨论,由勾股定理可求的长,即可求的周长.
【详解】
解:∵四边形是矩形,
∴ ,.
∵把沿直线折叠,
∴,,.
若,且,
∴四边形是矩形,且,
解析:或
【分析】
由矩形的性质和折叠的性质可得,分两种情况讨论,由勾股定理可求的长,即可求的周长.
【详解】
解:∵四边形是矩形,
∴ ,.
∵把沿直线折叠,
∴,,.
若,且,
∴四边形是矩形,且,
∴四边形是正方形,
∴,
∴,
∴
∴的周长;
若,且
∴,
∴,,三点共线.
在中,,
∴的周长,
故答案为:或.
【点睛】
本题主要考查翻折变换,矩形的性质,勾股定理,熟练运用分类讨论思想是解决问题的关键.
三、解答题
17.(1);(2)7;(3)4;(4)
【分析】
(1)先化简成最简二次根式,再合并同类二次根式即可;
(2)先化简成最简二次根式,再根据二次根式除法计算即可;
(3)先化简成最简二次根式,再根据二次根
解析:(1);(2)7;(3)4;(4)
【分析】
(1)先化简成最简二次根式,再合并同类二次根式即可;
(2)先化简成最简二次根式,再根据二次根式除法计算即可;
(3)先化简成最简二次根式,再根据二次根式运算法则计算即可;
(4)先根据绝对值、0指数幂、负整数指数幂化简,再计算即可;
【详解】
解:(1)原式=;
(2)原式=;
(3)原式=3×-=9-5=4;
(4)原式=.
【点睛】
本题考查二次根式的运算、0指数幂、负整数指数幂,解题的关键是先化简再进行计算.
18.B、C两点之间的距离为海里
【分析】
根据题意可知,然后根据勾股定理计算即可.
【详解】
解:根据题意可知,
1小时后,海里,海里,
在中,
海里,
∴B、C两点之间的距离为海里.
【点睛】
本题考
解析:B、C两点之间的距离为海里
【分析】
根据题意可知,然后根据勾股定理计算即可.
【详解】
解:根据题意可知,
1小时后,海里,海里,
在中,
海里,
∴B、C两点之间的距离为海里.
【点睛】
本题考查了方向角以及勾股定理,读懂题意,得出是关键.
19.(1)直角三角形,理由见解析;(2)5
【解析】
【分析】
(1)根据勾股定理得到,,,再根据勾股定理的逆定理即可求解;
(2)用正方形的面积减去3个三角形的面积即可求解.
【详解】
解:(1)是直
解析:(1)直角三角形,理由见解析;(2)5
【解析】
【分析】
(1)根据勾股定理得到,,,再根据勾股定理的逆定理即可求解;
(2)用正方形的面积减去3个三角形的面积即可求解.
【详解】
解:(1)是直角三角形,理由:
正方形小方格边长为1,
,,.
,
是直角三角形;
(2)的面积,
故的面积为5.
【点睛】
本题考查了勾股定理的逆定理、勾股定理,解题的关键是熟知勾股定理及勾股定理的逆定理.
20.(1)见解析;(2)15;(3)见解析
【分析】
(1)作AG⊥EF于G,如图1所示:则∠AGE=∠AGF=90°,先证明四边形ABCD是矩形,再由角平分线的性质得出AB=AD,即可得出四边形ABC
解析:(1)见解析;(2)15;(3)见解析
【分析】
(1)作AG⊥EF于G,如图1所示:则∠AGE=∠AGF=90°,先证明四边形ABCD是矩形,再由角平分线的性质得出AB=AD,即可得出四边形ABCD是正方形;
(2)根据全等三角形的判定得△AGF≌△ADF,进而推出EF=GE+GF=BE+DF,设AG=x,则正方形ABCD边长BC=CD=x,在Rt△ECF中,由勾股定理得AG=6,根据三角形面积公式得S△AEF=15;
(3)如图(2),由(1)、(2)得∠EAF=∠BAD=×90°=45°,根据相似三角形的判定得△AMN∽△DMA,根据相似的性质可得结论.
【详解】
(1)证明:作于,如图(1)所示:
则,
∵,,
∴,
∴四边形是矩形,
又∵,外角平分线交于点,
∴,,
∴,
∴四边形是正方形;
(2)解:由(1)知,,,,
又,,
∴,,
∴,,
∴,
设,则正方形边长,
由(2)知,,
∴,
,
.
∴在中,由勾股定理得
,
解得:,(舍去).
∴,
∴.
(3)证明:如图(2),
由(1)、(2)易知,,,
∴,
即,
在和中,
,
∴,
∴,
∴.
【点睛】
本题考查了正方形的判定与性质、全等三角形的判定与性质、角平分线的性质、勾股定理、矩形的判定、翻折变换的性质等知识;本题综合性强,有一定难度.
21.(1);(2)
【解析】
【分析】
(1)首先理解题意,根据题目的解析,即可利用两种不同的方法化简求得答案;
(2)结合题意,可将原式化为(-+-+-+…+-),继而求得答案.
【详解】
解:(1)
解析:(1);(2)
【解析】
【分析】
(1)首先理解题意,根据题目的解析,即可利用两种不同的方法化简求得答案;
(2)结合题意,可将原式化为(-+-+-+…+-),继而求得答案.
【详解】
解:(1)方法一:===-;
方法二:===-;
(2)原式=(-+-+-+…+﹣)=(﹣)=-.
故答案为(1)-;(2)-.
【点睛】
此题考查了分母有理化的知识.此题难度较大,解题的关键是理解题意,掌握分母有理化的两种方法.
22.(1)7,2.4,3.6;(2)y=2x+2;(3)5.4元
【分析】
(1)a即为AB与y轴的交点的纵坐标,可结合图象,单价=总价÷路程,b、c便可以求出;
(2)利用表格中的数据求解即可;
(3
解析:(1)7,2.4,3.6;(2)y=2x+2;(3)5.4元
【分析】
(1)a即为AB与y轴的交点的纵坐标,可结合图象,单价=总价÷路程,b、c便可以求出;
(2)利用表格中的数据求解即可;
(3)利用待定系数法求解求出当x>10时,y2与x之间的函数关系式,再把x=12分别代入y1和y2的函数表达式即可解答.
【详解】
解:解:(1)由图可知,a=7,
b=(26.2-7)÷(10-2)=2.4,
c=(29.8-26.2)÷(11-10)=3.6(元);
故答案为7,2.4,3.6;
(2)当2<x≤10时,求y1的函数表达式为y1=6+2(x-2)=2x+2;
(3)设当x>10时,y2与x之间的函数关系式为y2=kx+b,
根据题意得,,
解得:,
∴y2与x之间的函数关系式为y2=3.6x-9.8(x>10);
当x>10时,y1与x之间的函数关系式为6+2×(10-2)+3(x-10)=3x-8(x>10).
当x=12时,y2=3.6×12-9.8=33.4(元),y1=3×12-8=28(元),33.4-28=5.4(元),
答:白天收费比夜间收费少5.4元.
【点睛】
本题主要考查一次函数的应用问题,熟练掌握一次函数的性质是解答本题的关键.
23.(1)见解析;(2)FH+FE=DF,理由见解析;(3)
【分析】
(1)如图1中,证明△AFB≌△DGA(AAS)可得结论.
(2)结论:FH+FE=DF.如图2中,过点D作DK⊥AE于K,DJ⊥
解析:(1)见解析;(2)FH+FE=DF,理由见解析;(3)
【分析】
(1)如图1中,证明△AFB≌△DGA(AAS)可得结论.
(2)结论:FH+FE=DF.如图2中,过点D作DK⊥AE于K,DJ⊥BF交BF的延长线于J,证明四边形DKFJ是正方形,可得结论.
(3)如图3中,取AD的中点J,连接PJ,延长JP交CD于R,过点P作PT⊥CD于T,PK⊥AD于K.设PT=b.证明△KPJ是等腰直角三角形,推出点P在线段JR上运动,求出JR即可解决问题.
【详解】
解:(1)如图1中,
∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∵DG⊥AE,AE⊥BH,
∴∠AFB=∠DGH=90°,
∴∠FAB+∠DAG=90°,∠DAG+∠ADG=90°,
∴∠BAF=∠ADG,
∴△AFB≌△DGA(AAS),
∴AF=DG,BF=AG,
∴BF-DG=AG-AF=FG.
(2)结论:FH+FE=DF.
理由:如图2中,过点D作DK⊥AE于K,DJ⊥BF交BF的延长线于J,
∵四边形ABCD是正方形,
∴∠BAD=∠ADE=90°,AB=AD,
∵AE⊥BH,
∴∠AFB=90°,
∴∠DAE+∠EAB=90°,∠EAB+∠ABH=90°,
∴∠DAE=∠ABH,
∴△ABH≌△DAE(ASA),
∴AH=AE,
∵DE=EC=CD,CD=AD,
∴AH=DH,
∴DE=DH,
∵DJ⊥BJ,DK⊥AE,
∴∠J=∠DKE=∠KFJ=90°,
∴四边形DKFJ是矩形,
∴∠JDK=∠ADC=90°,
∴∠JDH=∠KDE,
∵∠J=∠DKE=90°,
∴△DJH≌△DKE(AAS),
∴DJ=DK,JH=EK,
∴四边形DKFJ是正方形,
∴FK=FJ=DK=DJ,
∴DF=FJ,
∴FH+FE=FJ-HJ+FK+KE=2FJ=DF;
(3)如图3中,取AD的中点J,连接PJ,延长JP交CD于R,过点P作PT⊥CD于T,PK⊥AD于K.设PT=b.
∵△ABH≌△DAE,
∴AH=DE,
∵∠EDH=90°,HP=PE,
∴PD=PH=PE,
∵PK⊥DH,PT⊥DE,
∴∠PKD=∠KDT=∠PTD=90°,
∴四边形PTDK是矩形,
∴PT=DK=b,PK=DT,
∵PH=PD=PE,PK⊥DH,PT⊥DE,
∴DH=2DK=2b,DE=2DT,
∴AH=DE=1-2b,
∴PK=DE=-b,
JK=DJ-DK=-b,
∴PK=KJ,
∵∠PKJ=90°,
∴∠KJP=45°,
∴点P在线段JR上运动,
∵JR=DJ=,
∴点P的运动轨迹的长为.
【点睛】
本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,轨迹等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数解决问题,属于中考压轴题.
24.(1);(2);(3)存在两个点,,理由见解析;(4)1.9.
【解析】
【分析】
(1)由可得,在中,利用勾股定理解得的长,最后根据三角形面积公式解题;
(2)作轴于点,根据题意,可证,再由全等三
解析:(1);(2);(3)存在两个点,,理由见解析;(4)1.9.
【解析】
【分析】
(1)由可得,在中,利用勾股定理解得的长,最后根据三角形面积公式解题;
(2)作轴于点,根据题意,可证,再由全等三角形对应边相等的性质得到,结合点的坐标分别解得的长,继而得到的坐标,再由待定系数法解得直线的解析式为:,令即可解题;
(3)画出符合题意的示意图,可知有两个点符合,设,过点作直线平行轴,过点作直线平行轴,两直线相交于点,由点坐标解得,根据题意可证,再由全等三角形对应边相等的性质解得的长,继而得到点,最后将点代入直线上即可解题;
(4)过点作于点,于点,连接,设,由全等三角形的判定与性质得到,再由全等三角形对应边相等得到
,由此解得点,继而推出点在直线上,过点作直线的垂线,根据垂线段最短及等积法解题即可.
【详解】
解:(1)根据题意得,
在与中,
中,
中,
,
故答案为:;
(2)作轴于点,
在与中,
设直线的解析式为:,代入点得,
解得:
直线的解析式为:
令得,,
;
(3)存在,有两个点符合题意,,理由如下:
设,过点作直线平行轴,过点作直线平行轴,两直线相交于点,如图,
由题意得
在中,
即
在直线上,
如图,
(4)过点作于点,于点,连接,如图,
设,
由题意可知
点在直线上,
过点作直线的垂线,垂足为点,根据垂线段最短原理,可知此时线段最短,如图,
令
解得直线与轴的交点
令
解得直线与轴的交点
由等积法得,
,
故答案为:1.9.
【点睛】
本题考查全等三角形的判定与性质、勾股定理、待定系数法求一次函数的解析式、垂线段最短等知识,是重要考点,难度一般,正确作出辅助线、掌握相关知识是解题关键.
25.(1)3;(2)6(3)BD=AM,证明见解析
【分析】
(1)因为速度相等和等腰三角形的已知条件,作平行线构造全等三角形,问题得以解决. (2)这类题一般结论成立,根据(1)中的思路,加上等腰三角
解析:(1)3;(2)6(3)BD=AM,证明见解析
【分析】
(1)因为速度相等和等腰三角形的已知条件,作平行线构造全等三角形,问题得以解决. (2)这类题一般结论成立,根据(1)中的思路,加上等腰三角形的性质,可以求出定值. (3)根据已知条件可以判断是等腰直角三角形,近而求出≌,得出ED=EM,即可得出结论.
【详解】
(1)
如图,过P点作PF∥AC交BC于F,
∵点P和点Q同时出发,且速度相同,
∴BP=CQ,
∵PF//AQ,
∴∠PFB=∠ACB,∠DPF=∠CQD,
又∵AB=AC,
∴∠B=∠ACB,
∴∠B=∠PFB,
∴BP=PF,
∴PF=CQ,又∠PDF=∠QDC,
∴△PFD≌△QCD,
∴DF=CD=CF,
又因P是AB的中点,PF∥AQ,
∴F是BC的中点,即FC=BC=6,
∴CD=CF=3;
(2)为定值.
如图②,点P在线段AB上,
过点P作PF//AC交BC于F,
则有(1)可知△PBF为等腰三角形,
∵PE⊥BF
∴BE=BF
∵有(1)可知△PFD≌△QCD
∴CD=
∴
(3)BD=AM
证明:∵
∴
∴是等腰直角三角形
∵E为BC的中点
∴
∴,
∴,
∵AH⊥CM
∴
∵
∴
∴≌ (ASA)
∴
∴
即:
26.(1)①4;②2,3,10;(2);(3)36
【分析】
(1)①由三角形的中位线定理可得DE∥BC,AE=EC,AD=BD,可求S△PDE=S△BDE=1,即可求解;②由三角形的中位线定理可得DE
解析:(1)①4;②2,3,10;(2);(3)36
【分析】
(1)①由三角形的中位线定理可得DE∥BC,AE=EC,AD=BD,可求S△PDE=S△BDE=1,即可求解;②由三角形的中位线定理可得DE∥BC,AE=EC,AD=BD,可得S△PBD=S△APD=2,S△APE=S△PEC=3,即可求解;
(2)连接AP,由三角形的中位线定理可得DE∥BC,AE=EC,AD=BD,可得S△PBD=S△APD=4,S△APE=S△PEC=5,可求S△ADE,即可求解;
(3)先证△NFK是等边三角形,可得NF=NK=NK=FG=KJ,可得S△PGF=S△PFN=7,S△PKJ=S△PKN=8,即可求解.
【详解】
解:(1)如图2,连接BE,
∵DE是△ABC的中位线,
∴DE∥BC,AE=EC,AD=BD,
∴S△PDE=S△BDE=1,
∴S△ABE=2,
∴S△ABC=4,
故答案为:4;
②∵DE是△ABC的中位线,
∴DE∥BC,AE=EC,AD=BD,
∴S△PBD=S△APD=2,S△APE=S△PEC=3,
∴S△ABC=10;
故答案为:2,3,10;
(2)如图3,连接AP,
∵DE是△ABC的中位线,
∴DE∥BC,AE=EC,AD=BD,S△ABC=4S△ADE,
∴S△PBD=S△APD=5,S△APE=S△PEC=5,
∴S△ADE=S△APD+S△APE﹣S△PDE=4,
∴S△ABC=4S△ADE=16;
(3)如图4,延长GF,JK交于点N,连接GJ,连接PN,
∵六边形FGHIJK是正六边形,
∴FG=FK=KJ,∠GFK=∠JKF=120°,S六边形FGHIJK=2S四边形FGJK,
∴∠NFK=∠NKF=60°,
∴△NFK是等边三角形,
∴NF=NK=FK=FG=KJ,
∴S△PGF=S△PFN=7,S△PKJ=S△PKN=8,FK是△NGJ的中位线,
∴S△NFK=S△PFN+S△PKN﹣S△PFK=6,
∵FK是△NGJ的中位线,
∴S△NGJ=4S△NFK=24;
∴S四边形FGJK=24﹣6=18,
∴S六边形FGHIJK=36.
【点睛】
本题是四边形综合题,考查了等边三角形的判定和性质,三角形的中位线定理,正六边形的性质等知识,熟练运用三角形中位线定理是解题的关键.
展开阅读全文