1、2022年人教版中学七7年级下册数学期末综合复习试卷含解析一、选择题1如图,直线a,b被直线c所截,1的同旁内角是( )A2B3C4D52在以下现象中,属于平移的是( )在荡秋千的小朋友的运动;坐观光电梯上升的过程;钟面上秒针的运动;生产过程中传送带上的电视机的移动过程ABCD3若点P在x轴的下方,y轴的右方,到x轴、y轴的距离分别是3和4,则点P的坐标为( )A(4,3)B(4,3)C(3,4)D(3,4)4下列命题:过直线外一点有且只有一条直线与已知直线平行;在同一平面内,过一点有且只有一条直线与已知直线垂直;图形平移的方向一定是水平的;内错角相等其中真命题为( )ABCD5如图,ABCD
2、,12,3130,则2等于()A30B25C35D406有下列说法:(1)-6是36的一个平方根;(2)16的平方根是4;(3);(4)是无理数;(5)当时,一定有是正数,其中正确的说法有( )A1个B2个C3个D4个7如图,直线ab,直角三角板ABC的直角顶点C在直线b上,若154,则2的度数为( )A36B44C46D548如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2021次碰到球桌边时,小球的位置是( )A(3,4)B(5,4)C(7,0)D(8,1
3、)九、填空题9已知实数x,y满足+(y+1)2=0,则x-y的立方根是_十、填空题10点关于轴对称的点的坐标为_十一、填空题11如图,在ABC中,CD是它的角平分线,DEAC于点 E若BC6cm,DE2cm,则BCD的面积为_cm2十二、填空题12如图所示,已知ABCD,EF平分CEG,180,则2的度数为_十三、填空题13如图,将矩形ABCD沿MN折叠,使点B与点D重合,若DNM75,则AMD_十四、填空题14定义一种新运算“”规则如下:对于两个有理数,若,则_十五、填空题15若P(2a,2a+3)到两坐标轴的距离相等,则点P的坐标是_十六、填空题16在平面直角坐标系中,一个智能机器人接到如
4、下指令,从原点O出发,按向右、向上、向右、向下的方向依次不断移动,每次移动1个单位,其行走路线如图所示,第1次移动到A1,第2次移动到A2,第n次移动到An,则A2021的坐标是_十七、解答题17(1)计算:(2)解方程:十八、解答题18求下列各式中的x值:(1)169x2144;(2)(x2)2360.十九、解答题19完成下面的证明如图,ABCD,B+D180,求证:BEDF分析:要证BEDF,只需证1D证明:ABCD(已知)B+1180( )B+D180(已知)1D( )BEDF( )二十、解答题20已知在平面直角坐标系中有三点A(2,1)、B(3,1)、C(2,3)请回答如下问题:(1)
5、在坐标系内描出点A、B、C的位置;(2)求出以A、B、C三点为顶点的三角形的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10,若存在,请直接写出点P的坐标;若不存在,请说明理由二十一、解答题21已知某正数的两个平方根分别是和的立方根是是的整数部分(1)求的值;(2)求的算术平方根二十二、解答题22如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米,求正方形纸板的边长二十三、解答题23如图1,/,点、分别在、上,点在直线、之间,且(1)求的值;(2)如图2,直线分别交、的角平分线于点、,直接写出的值;(3)如图3,在
6、内,;在内,直线分别交、分别于点、,且,直接写出的值二十四、解答题24为了安全起见在某段铁路两旁安置了两座可旋转探照灯如图1所示,灯射线从开始顺时针旋转至便立即回转,灯射线从开始顺时针旋转至便立即回转,两灯不停交又照射巡视若灯转动的速度是每秒2度,灯转动的速度是每秒1度假定主道路是平行的,即,且(1)填空:_;(2)若灯射线先转动30秒,灯射线才开始转动,在灯射线到达之前,灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯射线到达之前若射出的光束交于点,过作交于点,且,则在转动过程中,请探究与的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由二十五、解答题25
7、如图,已知直线ab,ABC100,BD平分ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P问1的度数与EPB的度数又怎样的关系?(特殊化)(1)当140,交点P在直线a、直线b之间,求EPB的度数;(2)当170,求EPB的度数;(一般化)(3)当1n,求EPB的度数(直接用含n的代数式表示)【参考答案】一、选择题1A解析:A【分析】根据同旁内角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行求解【详解】解: 直线a,b被直线c所截
8、,1的同旁内角是2,故选:A【点睛】本题考查了同旁内角的定义,能熟记同旁内角的定义的内容是解此题的关键,注意数形结合2B【分析】平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移平移不改变图形的形状和大小平移可以不是水平的据此解答【详解】解析:B【分析】平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移平移不改变图形的形状和大小平移可以不是水平的据此解答【详解】在荡秋千的小朋友的运动,不是平移;坐观光电梯上升的过程,是平移;钟面上秒针的运动,不是平移;生产过程中传送带上的
9、电视机的移动过程是平移;故选:B【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选3A【分析】根据点的坐标的几何意义及点在第四象限内的坐标符号的特点解答即可【详解】点P在x轴的下方,y轴的右方,点P在第四象限,又点P到x轴、y轴的距离分别是3和4,点P的横坐标是4,纵坐标是-3,即点P的坐标为,故选:A【点睛】本题主要考查了点在在第四象限内的坐标符号,以及横坐标的绝对值解释到y轴的距离,纵坐标的绝对值就是到x轴的距离4A【分析】根据两直线的位置关系即可判断.【详解】过直线外一点有且只有一条直线与已知直线平行,正确;在同一平
10、面内,过一点有且只有一条直线与已知直线垂直,正确;图形平移的方向不一定是水平的,故错误;两直线平行,内错角才相等,故错误故正确,故选A.【点睛】此题主要考查两直线的位置关系,解题的关键是熟知两直线的位置关系.5B【分析】根据ABCD,3130,求得GAB3130,利用平行线的性质求得BAE180GAB18013050,由12 求出答案即可【详解】解:ABCD,3130,GAB3130,BAE+GAB180,BAE180GAB18013050,12, 2BAE5025故选:B【点睛】此题考查平行线的性质:两直线平行同位角相等,两直线平行同旁内角互补,熟记性质定理是解题的关键6B【分析】根据平方根
11、与立方根的定义与性质逐个判断即可【详解】(1)是36的一个平方根,则此说法正确;(2)16的平方根是,则此说法错误;(3),则此说法正确;(4),4是有理数,则此说法错误;(5)当时,无意义,则此说法错误;综上,正确的说法有2个,故选:B【点睛】本题考查了平方根与立方根,熟练掌握平方根与立方根的定义与性质是解题关键7A【分析】根据直角三角形可求出3的度数,再根据平行线的性质2=3即可得出答案【详解】解:如图所示:直角三角形ABC,C=90,1=54,3=90-1=36,ab,2=3=36故选:A【点睛】本题考查了平行线的性质,熟练掌握平行线的性质,求出3的度数是解题的关键8B【分析】根据题意,
12、可以画出相应的图形,然后即可发现点所在位置的变化特点,即可得到小球第2021次碰到球桌边时,小球的位置【详解】解:由图可得,点(1,0)第一次碰撞后的点的坐标为(0解析:B【分析】根据题意,可以画出相应的图形,然后即可发现点所在位置的变化特点,即可得到小球第2021次碰到球桌边时,小球的位置【详解】解:由图可得,点(1,0)第一次碰撞后的点的坐标为(0,1),第二次碰撞后的点的坐标为(3,4),第三次碰撞后的点的坐标为(7,0),第四次碰撞后的点的坐标为(8,1),第五次碰撞后的点的坐标为(5,4),第六次碰撞后的点的坐标为(1,0),20216=3365,小球第2021次碰到球桌边时,小球的
13、位置是(5,4),故选:B【点睛】本题考查了坐标确定位置,解答本题的关键是明确题意,发现点的坐标位置的变化特点,利用数形结合的思想解答九、填空题9【分析】先根据非负数的性质列出方程求出x、y的值求x-y的立方根.【详解】解:由题意得,x-2=0,y+1=0,解得x=2,y=-1,x-y=3,3的立方根是【点睛】本题考查的是解析:【分析】先根据非负数的性质列出方程求出x、y的值求x-y的立方根.【详解】解:由题意得,x-2=0,y+1=0,解得x=2,y=-1,x-y=3,3的立方根是【点睛】本题考查的是非负数的性质和立方根的概念,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键十、填空
14、题10【分析】关于轴对称,横坐标不变,纵坐标互为相反数,进而可求解【详解】解:由点关于轴对称点的坐标为:,故答案为【点睛】本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握解析:【分析】关于轴对称,横坐标不变,纵坐标互为相反数,进而可求解【详解】解:由点关于轴对称点的坐标为:,故答案为【点睛】本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键十一、填空题116【分析】根据角平分线的性质计算即可;【详解】作,CD是角平分线,DEAC,又BC6cm,;故答案是6【点睛】本题主要考查了角平分线的性质,准确计算是解题的关解析:6【分析
15、】根据角平分线的性质计算即可;【详解】作,CD是角平分线,DEAC,又BC6cm,;故答案是6【点睛】本题主要考查了角平分线的性质,准确计算是解题的关键十二、填空题1250【分析】由角平分线的定义,结合平行线的性质,易求2的度数【详解】解:EF平分CEG,CEG2CEF,又ABCD,2CEF(1801)50,解析:50【分析】由角平分线的定义,结合平行线的性质,易求2的度数【详解】解:EF平分CEG,CEG2CEF,又ABCD,2CEF(1801)50,故答案为:50【点睛】本题主要考查了平行线的性质,解决问题的关键是利用平行线的性质确定内错角相等,然后根据角平分线定义得出所求角与已知角的关系
16、十三、填空题1330【分析】由题意,根据平行线的性质和折叠的性质,可以得到BMD的度数,从而可以求得AMD的度数,本题得以解决【详解】解:四边形ABCD是矩形,DNAM,DNM75解析:30【分析】由题意,根据平行线的性质和折叠的性质,可以得到BMD的度数,从而可以求得AMD的度数,本题得以解决【详解】解:四边形ABCD是矩形,DNAM,DNM75,DNMBMN75,将矩形ABCD沿MN折叠,使点B与点D重合,BMNNMD=75,BMD150,AMD30,故答案为:30【点睛】本题考查了矩形的性质、平行线的性质、折叠的性质,属于基础常考题型,难度适中,熟练掌握这些知识的综合运用是解答的关键十四
17、、填空题14【分析】根据给定新运算的运算法则可以得到关于x的方程,解方程即可得到解答【详解】解:由题意得:(5x-x)(2)=1,-2(5x-x)-(-2)=-1,-8x+2=-1,解之得解析:【分析】根据给定新运算的运算法则可以得到关于x的方程,解方程即可得到解答【详解】解:由题意得:(5x-x)(2)=1,-2(5x-x)-(-2)=-1,-8x+2=-1,解之得:,故答案为【点睛】本题考查新定义下的实数运算,通过阅读题目材料找出有关定义和运算法则并应用于新问题的解决是解题关键 十五、填空题15(,)或(7,7).【分析】根据题意可得关于a的绝对值方程,解方程可得a的值,进一步即得答案.【
18、详解】解:P(2a,2a+3)到两坐标轴的距离相等,.或,解得或,当时,P点解析:(,)或(7,7).【分析】根据题意可得关于a的绝对值方程,解方程可得a的值,进一步即得答案.【详解】解:P(2a,2a+3)到两坐标轴的距离相等,.或,解得或,当时,P点坐标为(,);当时,P点坐标为(7,7).故答案为(,)或(7,7).【点睛】本题考查了直角坐标系中点的坐标特征,根据题意列出方程是解题的关键.十六、填空题16(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3
19、,解析:(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),202145051,所以A2021的坐标为(5052+1,0),则A2021的坐标是(1011,0)故答案为:(1011,0)【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般十七、解答题17(1);(2)x=【分析】(1)先算乘方、绝对值和开方,再算乘法,最后算加减; (2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可【详解】解
20、:(1)=解析:(1);(2)x=【分析】(1)先算乘方、绝对值和开方,再算乘法,最后算加减; (2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可【详解】解:(1)=;(2),去分母,可得:3(x+1)-6=2(2-3x),去括号,可得:3x+3-6=4-6x,移项,可得:3x+6x=4-3+6,合并同类项,可得:9x=7,系数化为1,可得:x=【点睛】此题主要考查了实数的混合运算,解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1十八、解答题18(1)x;(2)x8或x4.【分析】(1)移项后,根据平方根定义求
21、解;(2)移项后,根据平方根定义求解【详解】解:(1)169x2144,移项得:x2,解得:x.解析:(1)x;(2)x8或x4.【分析】(1)移项后,根据平方根定义求解;(2)移项后,根据平方根定义求解【详解】解:(1)169x2144,移项得:x2,解得:x.(2)(x2)2360,移项得:(x2)236,开方得:x-2=6或x-2=-6解得:x8或x4.故答案为(1)x;(2)x8或x4.【点睛】本题考查利用平方根解方程,解答此题的关键是掌握平方根的概念.十九、解答题19两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行【分析】要证BEDF,只需证1D,由ABCD可知B+1
22、180,又有B+D180,由此即可证得【详解】解析:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行【分析】要证BEDF,只需证1D,由ABCD可知B+1180,又有B+D180,由此即可证得【详解】证明:ABCD(已知)B+1180(两直线平行,同旁内角互补)B+D180(已知)1D(同角的补角相等),BEDF(同位角相等,两直线平行)故答案为:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解二十、解答题20(1)见解析;(2)SABC5;(3)存在,P点的坐标为(0,5)或(
23、0,3)【分析】(1)根据点的坐标,直接描点;(2)根据点的坐标可知,ABx轴,且AB3(2)5,点C到线解析:(1)见解析;(2)SABC5;(3)存在,P点的坐标为(0,5)或(0,3)【分析】(1)根据点的坐标,直接描点;(2)根据点的坐标可知,ABx轴,且AB3(2)5,点C到线段AB的距离312,根据三角形面积公式求解;(3)因为AB5,要求ABP的面积为10,只要P点到AB的距离为4即可,又P点在y轴上,满足题意的P点有两个【详解】解:(1)描点如图;(2)依题意,得ABx轴,且AB3(2)5,SABC525;(3)存在;AB5,SABP10,P点到AB的距离为4,又点P在y轴上,
24、P点的坐标为(0,5)或(0,3)【点睛】本题考查了点的坐标的表示方法,能根据点的坐标表示三角形的底和高并求三角形的面积二十一、解答题21(1),c=4;(2)4【分析】(1)由题意可得出,得出a的值,代入中得出b的值,再根据即可得出c的值;(2)代入a、b、c的值求出代数式的值,再求算术平方根即可【详解】解:(1)某解析:(1),c=4;(2)4【分析】(1)由题意可得出,得出a的值,代入中得出b的值,再根据即可得出c的值;(2)代入a、b、c的值求出代数式的值,再求算术平方根即可【详解】解:(1)某正数的两个平方根分别是和又的立方根是3又,c是的整数部分(2)故的算术平方根是4【点睛】本题
25、考查的知识点是平方根、算术平方根、立方根、估算无理数的大小,属于基础题目,解此题的难点在于c值的确定,学会用“逼近法”求无理数的整数部分是解此题的关键二十二、解答题22正方形纸板的边长是18厘米【分析】根据正方形的面积公式进行解答【详解】解:设小长方形的宽为x厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得:,取正值,可得,解析:正方形纸板的边长是18厘米【分析】根据正方形的面积公式进行解答【详解】解:设小长方形的宽为x厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得:,取正值,可得,答:正方形纸板的边长是18厘米【点评】本题考查了算术平方根的实际应用,解题
26、的关键是熟悉正方形的面积公式二十三、解答题23(1) ;(2)的值为40;(3)【分析】(1)过点O作OGAB,可得ABOGCD,利用平行线的性质可求解;(2)过点M作MKAB,过点N作NHCD,由角平分线的定义可设BEM解析:(1) ;(2)的值为40;(3)【分析】(1)过点O作OGAB,可得ABOGCD,利用平行线的性质可求解;(2)过点M作MKAB,过点N作NHCD,由角平分线的定义可设BEM=OEM=x,CFN=OFN=y,由BEO+DFO=260可求x-y=40,进而求解;(3)设直线FK与EG交于点H,FK与AB交于点K,根据平行线的性质即三角形外角的性质及,可得,结合,可得即可
27、得关于n的方程,计算可求解n值【详解】证明:过点O作OGAB,ABCD,ABOGCD,即 EOF=100,;(2)解:过点M作MKAB,过点N作NHCD,EM平分BEO,FN平分CFO,设x-y=40,MKAB,NHCD,ABCD,ABMKNHCD, =x-y=40,故的值为40;(3)如图,设直线FK与EG交于点H,FK与AB交于点K,ABCD, 即FK在DFO内, ,即解得 经检验,符合题意,故答案为:【点睛】本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键二十四、解答题24(1)72;(2)30秒或110秒;(3)不变,BAC=2BCD【分析】(1)根据BAM+
28、BAN=180,BAM:BAN=3:2,即可得到BAN的度数;(2)设A灯转动t秒,解析:(1)72;(2)30秒或110秒;(3)不变,BAC=2BCD【分析】(1)根据BAM+BAN=180,BAM:BAN=3:2,即可得到BAN的度数;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0t90时,根据2t=1(30+t),可得 t=30;当90t150时,根据1(30+t)+(2t-180)=180,可得t=110;(3)设灯A射线转动时间为t秒,根据BAC=2t-108,BCD=126-BCA=t-54,即可得出BAC:BCD=2:1,据此可得BAC和BCD关系不会变化【
29、详解】解:(1)BAM+BAN=180,BAM:BAN=3:2,BAN=180=72,故答案为:72;(2)设A灯转动t秒,两灯的光束互相平行,当0t90时,如图1,PQMN,PBD=BDA,ACBD,CAM=BDA,CAM=PBD2t=1(30+t),解得 t=30;当90t150时,如图2,PQMN,PBD+BDA=180,ACBD,CAN=BDAPBD+CAN=1801(30+t)+(2t-180)=180,解得 t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)BAC和BCD关系不会变化理由:设灯A射线转动时间为t秒,CAN=180-2t,BAC=72-(180
30、-2t)=2t-108,又ABC=108-t,BCA=180-ABC-BAC=180-t,而ACD=126,BCD=126-BCA=126-(180-t)=t-54,BAC:BCD=2:1,即BAC=2BCD,BAC和BCD关系不会变化【点睛】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补二十五、解答题25(1)EPB170;(2)当交点P在直线b的下方时:EPB20,当交点P在直线a,b之间时:EPB160,当交点P在直线a的上方时:EPB15020;(3)当解析:(1)EPB170;(2)
31、当交点P在直线b的下方时:EPB20,当交点P在直线a,b之间时:EPB160,当交点P在直线a的上方时:EPB15020;(3)当交点P在直线a,b之间时:EPB180|n50|;当交点P在直线a上方或直线b下方时:EPB|n50|.【分析】(1)利用外角和角平分线的性质直接可求解;(2)分三种情况讨论:当交点P在直线b的下方时;当交点P在直线a,b之间时;当交点P在直线a的上方时;分别画出图形求解;(3)结合(2)的探究,分两种情况得到结论:当交点P在直线a,b之间时;当交点P在直线a上方或直线b下方时;【详解】解:(1)BD平分ABC,ABDDBCABC50,EPB是PFB的外角,EPBPFB+PBF1+(18050)170;(2)当交点P在直线b的下方时:EPB15020;当交点P在直线a,b之间时:EPB50+(1801)160;当交点P在直线a的上方时:EPB15020;(3)当交点P在直线a,b之间时:EPB180|n50|;当交点P在直线a上方或直线b下方时:EPB|n50|;【点睛】考查知识点:平行线的性质;三角形外角性质根据动点P的位置,分类画图,结合图形求解是解决本题的关键数形结合思想的运用是解题的突破口