资源描述
2022年人教版中学七7年级下册数学期末综合复习题含解析
一、选择题
1.如图所示,下列结论中正确的是( )
A.和是同位角 B.和是同旁内角
C.和是内错角 D.和是对顶角
2.下列哪些图形是通过平移可以得到的( )
A. B.
C. D.
3.在平面直角坐标系中,点(-1,-3)位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列命题是假命题的是( )
A.三角形三个内角的和等于
B.对顶角相等
C.在同一平面内,垂直于同一条直线的两条直线互相平行
D.两条直线被第三条直线所截,同位角相等
5.下列几个命题中,真命题有( )
①两条直线被第三条直线所截,内错角相等;
②如果和是对顶角,那么;
③一个角的余角一定小于这个角的补角;
④三角形的一个外角大于它的任一个内角.
A.1个 B.2个 C.3个 D.4
6.下列计算正确的是( )
A. B. C. D.
7.如图,直线AB,CD被BC所截,若AB∥CD,∠1=50°,∠2=40°,则∠3等于( )
A.80° B.70° C.90° D.100°
8.如图,在平面直角坐标系中,,,,……根据这个规律,探究可得点的坐标是( )
A. B. C. D.
九、填空题
9.若=0,则=________ .
十、填空题
10.已知点与点关于轴对称,则的值为__________.
十一、填空题
11.已知点A(3a+5,a﹣3)在二、四象限的角平分线上,则a=__________.
十二、填空题
12.如图,,设,那么,,的关系式______.
十三、填空题
13.如图,将长方形沿折叠,使点C落在边上的点F处,若,则___º.
十四、填空题
14.已知有理数,我们把称为的差倒数,如:2的差倒数是,的差倒数是,如果,是的差倒数,是的差倒数,是的差倒数…依此类推,那么的值是______.
十五、填空题
15.已知点A在x轴上方,y轴左侧,到x轴的距离是3,到y轴的距离是4,那么点A的坐标是______________.
十六、填空题
16.育红中学八五班的数学社团在做如下的探究活动:在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向上、向右、向下、向右的方向依次移动,每次移动1个单位长度,其移动路线如图所示,第1次移动到点A1,第2次移动到点A2…第n次移动到点An,则△OA2A2021的面积是 __________________.
十七、解答题
17.(1)计算:
(2)计算:
(3)已知,求的值.
十八、解答题
18.求满足下列各式x的值
(1)2x2﹣8=0;
(2)(x﹣1)3=﹣4.
十九、解答题
19.如图.已知∠1=∠2,∠C=∠D,求证:∠A=∠F.
(1)请把下面证明过程中序号对应的空白内容补充完整.
证明:∴∠1=∠2(已知)
又∵∠1=∠DMN( )
∵∠2=∠DMN(等量代换)
∴DB∥EC( )
∴∠DBC+∠C=180°( ).
∵∠C=∠D(已知),
∴∠DBC+( )=180°(等量代换)
∴DF∥AC( )
∴∠A=∠F( )
(2)在(1)的基础上,小明进一步探究得到∠DBC=∠DEC,请帮他写出推理过程.
二十、解答题
20.在平面直角坐标系xOy中,点A的坐标为(0,4),线段MN的位置如图所示,其中点M的坐标为(﹣3,﹣1),点N的坐标为(3,﹣2).
(1)将线段MN平移得到线段AB,其中点M的对应点为A,点N的对应点为B.画出平移后的线段AB.
①点M平移到点A的过程可以是:先向 平移 个单位长度,再向 平移 个单位长度;
②点B的坐标为 ;
(2)在(1)的条件下,若点C的坐标为(4,0),连接AC,BC,求△ABC的面积.
二十一、解答题
21.已知的平方根是,的立方根是4,的算术平方根是m.
(1)求m的值;
(2)如果,其中x是整数,且,求的值.
二十二、解答题
22.如图,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.
(1)拼成的正方形的面积与边长分别是多少?
(2)如图所示,以数轴的单位长度的线段为边作一个直角三角形,以数轴的-1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A,那么点A表示的数是多少?点A表示的数的相反数是多少?
(3)你能把十个小正方形组成的图形纸,剪开并拼成正方形吗?若能,请画出示意图,并求它的边长
二十三、解答题
23.已知:AB∥CD,截线MN分别交AB、CD于点M、N.
(1)如图①,点B在线段MN上,设∠EBM=α°,∠DNM=β°,且满足+(β﹣60)2=0,求∠BEM的度数;
(2)如图②,在(1)的条件下,射线DF平分∠CDE,且交线段BE的延长线于点F;请写出∠DEF与∠CDF之间的数量关系,并说明理由;
(3)如图③,当点P在射线NT上运动时,∠DCP与∠BMT的平分线交于点Q,则∠Q与∠CPM的比值为 (直接写出答案).
二十四、解答题
24.如图,,平分,设为,点E是射线上的一个动点.
(1)若时,且,求的度数;
(2)若点E运动到上方,且满足,,求的值;
(3)若,求的度数(用含n和的代数式表示).
二十五、解答题
25.已知ABCD,点E是平面内一点,∠CDE的角平分线与∠ABE的角平分线交于点F.
(1)若点E的位置如图1所示.
①若∠ABE=60°,∠CDE=80°,则∠F= °;
②探究∠F与∠BED的数量关系并证明你的结论;
(2)若点E的位置如图2所示,∠F与∠BED满足的数量关系式是 .
(3)若点E的位置如图3所示,∠CDE 为锐角,且,设∠F=α,则α的取值范围为 .
【参考答案】
一、选择题
1.B
解析:B
【分析】
根据同位角,内错角,同旁内角以及对顶角的定义进行解答.
【详解】
解:A、∠1和∠2是同旁内角,故本选项错误;
B、∠2和∠3是同旁内角,故本选项正确;
C、∠1和∠4是同位角,故本选项错误;
D、∠3和∠4是邻补角,故本选项错误;
故选:B.
【点睛】
本题考查了同位角,内错角,同旁内角以及对顶角的定义.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.
2.B
【分析】
根据平移、旋转、轴对称的定义逐项判断即可.
【详解】
A、通过旋转得到,故本选项错误
B、通过平移得到,故本选项正确
C、通过轴对称得到,故本选项错误
D、通过旋转得到,故本选项错误
解析:B
【分析】
根据平移、旋转、轴对称的定义逐项判断即可.
【详解】
A、通过旋转得到,故本选项错误
B、通过平移得到,故本选项正确
C、通过轴对称得到,故本选项错误
D、通过旋转得到,故本选项错误
故选:B.
【点睛】
本题考查了平移、旋转、轴对称的定义,熟记定义是解题关键.
3.C
【分析】
根据平面直角坐标系中象限内点的特征判断即可;
【详解】
∵,,
∴点(-1,-3)位于第三象限;
故选C.
【点睛】
本题主要考查了平面直角坐标系中象限内点的特征,准确分析判断是解题的关键.
4.D
【分析】
根据三角形内角和定理,对顶角的性质,平行线的判定和性质逐一判断即可.
【详解】
解:A、三角形三个内角的和等于180°,故此说法正确,是真命题;
B、对顶角相等,故此说法正确,是真命题;
C、在同一平面内,垂直于同一条直线的两条直线互相平行两条,故此说法正确,是真命题;
D、两条平行直线被第三条直线所截,同位角相等,故此说法错误,是假命题.
故选D.
【点睛】
本题主要考查了命题的真假,解题的关键在于能够熟练掌握相关知识进行判断求解.
5.B
【分析】
根据平行线的性质对①进行判断;根据对顶角的性质对②进行判断;根据余角与补角的定义对③进行判断;根据三角形外角性质对④进行判断.
【详解】
解:两条平行直线被第三条直线所截,内错角相等,所以①错误;
如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;
一个角的余角一定小于这个角的补角,所以③正确;
三角形的外角大于任何一个与之不相邻的一个内角,所以④错误.
故选:B.
【点睛】
本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
6.D
【分析】
分别根据算术平方根的定义以及立方根的定义逐一判断即可.
【详解】
解:A、,故本选项不合题意;
B、,故本选项不合题意;
C、,故本选项不合题意;
D、,故本选项符合题意;
故选:D.
【点睛】
本题主要考查算术平方根及立方根,熟练掌握求一个数的算术平方根及立方根是解题的关键.
7.C
【分析】
根据AB∥CD判断出∠1=∠C=50°,根据∠3是△ECD的外角,判断出∠3=∠C+∠2,从而求出∠3的度数.
【详解】
解:∵AB∥CD,
∴∠1=∠C=50°,
∵∠3是△ECD的外角,
∴∠3=∠C+∠2,
∴∠3=50°+40°=90°.
故选:C.
【点睛】
本题考查了平行线的性质和三角形的外角性质,灵活运用是解题的关键.
8.B
【分析】
根据图形,找到点的坐标变换规律:横坐标依次为1、2、3、4、…、n,纵坐标依次为2、0、﹣2、0、…四个一循环,进而求解即可.
【详解】
解:观察图形可知,点的横坐标依次为1、2、3、
解析:B
【分析】
根据图形,找到点的坐标变换规律:横坐标依次为1、2、3、4、…、n,纵坐标依次为2、0、﹣2、0、…四个一循环,进而求解即可.
【详解】
解:观察图形可知,点的横坐标依次为1、2、3、4、…、n,纵坐标依次为2、0、﹣2、0、…四个一循环,且2021÷4=505…1,
∴点的坐标是(2021,2),
故选:B.
【点睛】
本题考查点坐标规律探究,找到点的坐标变换规律是解答的关键.
九、填空题
9.9
【解析】
试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n-2=0,解得:m=-3,n=2,则==9.
考点:非负数的性质.
解析:9
【解析】
试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n-2=0,解得:m=-3,n=2,则==9.
考点:非负数的性质.
十、填空题
10.-1
【分析】
直接利用关于y轴对称点的性质得出a,b的值进而得出答案.
【详解】
解:∵点A(a,2019)与点是关于y轴的对称点,
∴a=-2020,b=2019,
∴a+b=-1.
故答案为:
解析:-1
【分析】
直接利用关于y轴对称点的性质得出a,b的值进而得出答案.
【详解】
解:∵点A(a,2019)与点是关于y轴的对称点,
∴a=-2020,b=2019,
∴a+b=-1.
故答案为:-1.
【点睛】
本题考查关于y轴对称的点的坐标性质,解题关键是熟练掌握横纵坐标的关系.
十一、填空题
11.﹣
【详解】
∵点A(3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,
∴3a+5+a-3=0,
∴a=﹣.
故答案是:﹣.
解析:﹣
【详解】
∵点A(3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,
∴3a+5+a-3=0,
∴a=﹣.
故答案是:﹣.
十二、填空题
12.【分析】
过作,过作,根据平行线的性质可知,然后根据平行线的性质即可求解;
【详解】
如图,过作,过作,
∴,
∴,,,
∵,
∴,
∴,
∴,
∴,
∴.
故答案为:.
【点睛】
本题考查了平
解析:
【分析】
过作,过作,根据平行线的性质可知,然后根据平行线的性质即可求解;
【详解】
如图,过作,过作,
∴,
∴,,,
∵,
∴,
∴,
∴,
∴,
∴.
故答案为:.
【点睛】
本题考查了平行线的性质,两直线平行同位角相等,两直线平行内错角相等,正确理解平行线的性质是解题的关键;
十三、填空题
13.23
【分析】
根据∠EFB求出∠BEF,根据翻折的性质,可得到∠DEC=∠DEF,从而求出∠DEC的度数,即可得到∠EDC.
【详解】
解:∵△DFE是由△DCE折叠得到的,
∴∠DEC=∠FED
解析:23
【分析】
根据∠EFB求出∠BEF,根据翻折的性质,可得到∠DEC=∠DEF,从而求出∠DEC的度数,即可得到∠EDC.
【详解】
解:∵△DFE是由△DCE折叠得到的,
∴∠DEC=∠FED,
又∵∠EFB=44°,∠B=90°,
∴∠BEF=46°,
∴∠DEC=(180°-46°)=67°,
∴∠EDC=90°-∠DEC=23°,
故答案为:23.
【点睛】
本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键.
十四、填空题
14..
【分析】
根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值.
【详解】
∵,
∴,,,,
……
∴,每三个数一个循环,
∵,
∴,
则
+--3 -3-++
解析:.
【分析】
根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值.
【详解】
∵,
∴,,,,
……
∴,每三个数一个循环,
∵,
∴,
则
+--3 -3-++3
=-3-++3
.
故答案为:.
【点晴】
本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出所求式子的值.
十五、填空题
15.(-4,3) .
【分析】
到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值.
【详解】
解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数.
所以点A的坐
解析:(-4,3) .
【分析】
到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值.
【详解】
解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数.
所以点A的坐标为(-4,3)
故答案为:(-4,3) .
【点睛】
本题考查点的坐标,利用数形结合思想解题是关键.
十六、填空题
16.【分析】
由题意知OA4n=2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题.
【详解】
解:由题意知OA4n=2n(n为正整数),图形运动4次一个循环
解析:
【分析】
由题意知OA4n=2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题.
【详解】
解:由题意知OA4n=2n(n为正整数),图形运动4次一个循环,横坐标对应一个循环增加2
∵2021÷4=505…1,
∴A2021与A1是对应点,A2020与A0是对应点
∴OA2020=505×2=1010,A1A2021=1010
∴A2A2021=1010-1=1009
则△OA2A2019的面积是×1×1009=,
故答案为:.
【点睛】
本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.
十七、解答题
17.(1)2;(2)6;(3) 或
【解析】
【分析】
(1)利用乘法分配律给括号中各项都乘以 ,把化为最简二次根式即可得到结果;
(2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果;
解析:(1)2;(2)6;(3) 或
【解析】
【分析】
(1)利用乘法分配律给括号中各项都乘以 ,把化为最简二次根式即可得到结果;
(2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果;
(3)直接利用平方根的定义计算得出答案.
【详解】
解:(1)
,
;
(2)
,
,
;
(3)∵
∴
解得:或.
故答案为:(1)2;(2)6;(3) 或
【点睛】
本题考查立方根以及平方根,实数的运算,熟练掌握运算法则是解题的关键.
十八、解答题
18.(1)或者;(2)
【分析】
(1)根据求一个数的平方根解方程
(2)根据求一个数的立方根解方程
【详解】
(1)2x2﹣8=0,
,
,
解得或者;
(2)(x﹣1)3=﹣4,
,
,
解得.
【
解析:(1)或者;(2)
【分析】
(1)根据求一个数的平方根解方程
(2)根据求一个数的立方根解方程
【详解】
(1)2x2﹣8=0,
,
,
解得或者;
(2)(x﹣1)3=﹣4,
,
,
解得.
【点睛】
本题考查了求一个数的平方根和立方根,掌握平方根和立方根的概念是解题的关键.
十九、解答题
19.(1)见解析;(2)见解析
【分析】
(1)由对顶角相等及等量代换得到∠2=∠DMN,由此判定DB∥EC,由平行线的性质及等量代换得出∠DBC+∠D=180°即可判定DF∥AC,再根据平行线的性质即
解析:(1)见解析;(2)见解析
【分析】
(1)由对顶角相等及等量代换得到∠2=∠DMN,由此判定DB∥EC,由平行线的性质及等量代换得出∠DBC+∠D=180°即可判定DF∥AC,再根据平行线的性质即可得解;
(2)由平行线的性质及等量代换即可得解.
【详解】
解:(1)证明:∵∠1=∠2(已知),
又∵∠1=∠DMN(对顶角相等),
∴∠2=∠DMN(等量代换),
∴DB∥EC(同位角相等,两直线平行 ),
∴∠DBC+∠C=180°( 两直线平行,同旁内角互补),
∵∠C=∠D(已知),
∵∠DBC+(∠D)=180°(等量代换),
∴DF∥AC( 同旁内角互补,两直线平行),
∴∠A=∠F(两直线平行,内错角相等 ).
(2)∵DB∥EC,
∴∠DBC+∠C=180°,∠DEC+∠D=180°,
∵∠C=∠D,
∴∠DBC=∠DEC.
【点睛】
此题考查了平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键.
二十、解答题
20.(1)①右,3,上,5(答案不唯一);②(6,3);(2)10
【分析】
(1)由点M及其对应点的A的坐标可得平移的方向和距离,据此可得点N的对应点B的坐标;
(2)利用割补法,得到即可求解.
【详
解析:(1)①右,3,上,5(答案不唯一);②(6,3);(2)10
【分析】
(1)由点M及其对应点的A的坐标可得平移的方向和距离,据此可得点N的对应点B的坐标;
(2)利用割补法,得到即可求解.
【详解】
解:(1)将段MN平移得到线段AB,其中点M的对应点为A,点N的对称点为B,
①点M平移到点A的过程可以是:先向右平移3个单位长度,再向上平移5个单位长度;
∵N(3,-2),
∴将N(3,-2)先向右平移3个单位长度,再向上平移5个单位长度所得的坐标是(6,3)
∴②点B的坐标为(6,3);
(2)如图,过点B作BE⊥x轴于点E,过点A作AD⊥y轴交EB的延长线于点D,则四边形AOED是矩形,
∵A (0,4),B (6, 3), C(4,0)
∴E (6,0), D (6,4)
∴ AO= 4, CO= 4, EO=6,
∴CE=EO-CO=6-4=2, BE=3, DE= 4, AD=6, BD=DE-BE=4-3=1,
∴
【点睛】
本题主要考查作图-平移变换,熟练掌握平移变换的定义及其性质是解题的关键.
二十一、解答题
21.(1);(2).
【分析】
(1)根据9的平方根为±3得到2a-1=9,同理得11a+b-1=64,即可求出a,b的值,再进行求解即可;
(2)先估算,得到其整数部分,则y为小数部分,分别求出x,y
解析:(1);(2).
【分析】
(1)根据9的平方根为±3得到2a-1=9,同理得11a+b-1=64,即可求出a,b的值,再进行求解即可;
(2)先估算,得到其整数部分,则y为小数部分,分别求出x,y即可计算.
【详解】
(1)依题意得2a-1=9,11a+b-1=64,
解得a=5,b=10,
∴b-a=5,其算术平方根为,
∴m=
(2)x+y=10+
∵2<<3,
∴12<10+<13,
∴x=12,y=10+-12=-2
∴x-y=12-(-2)=
【点睛】
此题主要考查平方根的应用,解题的关键是熟知平方根的性质及实数的估算.
二十二、解答题
22.(1)5;;(2);;(3)能,.
【分析】
(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长.
(2)求出斜边长即可.
(3)一共有10个小正
解析:(1)5;;(2);;(3)能,.
【分析】
(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长.
(2)求出斜边长即可.
(3)一共有10个小正方形,那么组成的大正方形的面积为10,边长为10的算术平方根,画图.
【详解】
试题分析:
解:(1)拼成的正方形的面积与原面积相等1×1×5=5,
边长为,
如图(1)
(2)斜边长=,
故点A表示的数为:;点A表示的相反数为:
(3)能,如图
拼成的正方形的面积与原面积相等1×1×10=10,边长为.
考点:1.作图—应用与设计作图;2.图形的剪拼.
二十三、解答题
23.(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3)
【分析】
(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;
(2)过点E作直线EH∥AB,由角平分线的性质和平行
解析:(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3)
【分析】
(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;
(2)过点E作直线EH∥AB,由角平分线的性质和平行线的性质可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的数量可求解;
(3)由平行线的性质和外角性质可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解.
【详解】
解:(1)∵+(β﹣60)2=0,
∴α=30,β=60,
∵AB∥CD,
∴∠AMN=∠MND=60°,
∵∠AMN=∠B+∠BEM=60°,
∴∠BEM=60°﹣30°=30°;
(2)∠DEF+2∠CDF=150°.
理由如下:过点E作直线EH∥AB,
∵DF平分∠CDE,
∴设∠CDF=∠EDF=x°;
∵EH∥AB,
∴∠DEH=∠EDC=2x°,
∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°;
∴∠DEF=150°﹣2∠CDF,
即∠DEF+2∠CDF=150°;
(3)如图3,设MQ与CD交于点E,
∵MQ平分∠BMT,QC平分∠DCP,
∴∠BMT=2∠PMQ,∠DCP=2∠DCQ,
∵AB∥CD,
∴∠BME=∠MEC,∠BMP=∠PND,
∵∠MEC=∠Q+∠DCQ,
∴2∠MEC=2∠Q+2∠DCQ,
∴∠PMB=2∠Q+∠PCD,
∵∠PND=∠PCD+∠CPM=∠PMB,
∴∠CPM=2∠Q,
∴∠Q与∠CPM的比值为,
故答案为:.
【点睛】
本题主要考查了平行线的性质、角平分线的性质,准确计算是解题的关键.
二十四、解答题
24.(1)60°;(2)50°;(3)或
【分析】
(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;
(2)根据题意画出图形,先
解析:(1)60°;(2)50°;(3)或
【分析】
(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;
(2)根据题意画出图形,先根据可计算出的度数,由可计算出的度数,再根据平行线的性质和角平分线的性质,计算出的度数,即可得出结论;
(3)根据题意可分两种情况,①若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,,列出等量关系求解即可等处结论;②若点运动到下方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,列出等量关系求解即可等处结论.
【详解】
解:(1),,
,
平分,
,
,
又,
;
(2)根据题意画图,如图1所示,
,,
,
,
,
,
又平分,
,
;
(3)①如图2所示,
,
,
平分,
,
,
又,
,
,
解得;
②如图3所示,
,
,
平分,
,
,
又,
,
,
解得.
综上的度数为或.
【点睛】
本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补. 两直线平行,内错角相等.合理应用平行线的性质是解决本题的关键.
二十五、解答题
25.(1)①70;②∠F=∠BED,证明见解析;(2)2∠F+∠BED=360°;(3)
【分析】
(1)①过F作FG//AB,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A
解析:(1)①70;②∠F=∠BED,证明见解析;(2)2∠F+∠BED=360°;(3)
【分析】
(1)①过F作FG//AB,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,利用角平分线的定义得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),求得∠ABF+∠CDF=70,即可求解;
②分别过E、F作EN//AB,FM//AB,利用平行线的判定和性质得到∠BED=∠ABE+∠CDE,利用角平分线的定义得到∠BED=2(∠ABF+∠CDF),同理得到∠F=∠ABF+∠CDF,即可求解;
(2)根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合①的结论即可说明∠BED与∠BFD之间的数量关系;
(3)通过对的计算求得,利用角平分线的定义以及三角形外角的性质求得,即可求得.
【详解】
(1)①过F作FG//AB,如图:
∵AB∥CD,FG∥AB,
∴CD∥FG,
∴∠ABF=∠BFG,∠CDF=∠DFG,
∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,
∵BF平分∠ABE,
∴∠ABE=2∠ABF,
∵DF平分∠CDE,
∴∠CDE=2∠CDF,
∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60+80=140,
∴∠ABF+∠CDF=70,
∴∠DFB=∠ABF+∠CDF=70,
故答案为:70;
②∠F=∠BED,
理由是:分别过E、F作EN//AB,FM//AB,
∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,
∴∠BED=∠ABE+∠CDE,
∵DF、BF分别是∠CDE的角平分线与∠ABE的角平分线,
∴∠ABE=2∠ABF,∠CDE=2∠CDF,
即∠BED=2(∠ABF+∠CDF);
同理,由FM//AB,可得∠F=∠ABF+∠CDF,
∴∠F=∠BED;
(3)2∠F+∠BED=360°.
如图,过点E作EG∥AB,
则∠BEG+∠ABE=180°,
∵AB∥CD,EG∥AB,
∴CD∥EG,
∴∠DEG+∠CDE=180°,
∴∠BEG+∠DEG=360°-(∠ABE+∠CDE),
即∠BED=360°-(∠ABE+∠CDE),
∵BF平分∠ABE,
∴∠ABE=2∠ABF,
∵DF平分∠CDE,
∴∠CDE=2∠CDF,
∠BED=360°-2(∠ABF+∠CDF),
由①得:∠BFD=∠ABF+∠CDF,
∴∠BED=360°-2∠BFD,
即2∠F+∠BED=360°;
(3)∵,∠F=α,
∴,
解得:,
如图,
∵∠CDE 为锐角,DF是∠CDE的角平分线,
∴∠CDH=∠DHB,
∴∠F∠DHB,即,
∴,
故答案为:.
【点睛】
本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解.
展开阅读全文