1、人教版中学七年级数学下册期末学业水平(及答案)一、选择题1如图,直线EF与直线AB,CD相交图中所示的各个角中,能看做1的内错角的是( )A2B3C4D52如图所示的图案分别是四种汽车的车标,其中可以看作是由“基本图案”经过平移得到的是( )ABCD3下列各点中,在第四象限的是( )ABCD4下列命题中是假命题的是( )A对顶角相等B8的立方根是2C实数和数轴上的点是一一对应的D平行于同一直线的两条直线平行5如图,ABCD,12,3130,则2等于()A30B25C35D406下列算式,正确的是( )ABCD7如图,直线ab,直角三角板ABC的直角顶点C在直线b上,若154,则2的度数为( )
2、A36B44C46D548在平面直角坐标系中,点A(1,0)第一次向左跳动至A1(1,1),第二次向右跳至A2(2,1),第三次向左跳至A3(2,2),第四次向右跳至A4(3,2),按照此规律,点A第2021次跳动至A2021的坐标是( )A(1011,1011)B(1011,1010)C(1010,1010)D(1010,1009)九、填空题9若,则的值为十、填空题10已知点P(3,1)关于x轴的对称点Q的坐标是(ab,1b),则a_,b_十一、填空题11如图,分别作和的角平分线交于点,称为第一次操作,则_;接着作和的角平分线交于,称为第二次操作,继续作和的角平分线交于,称方第三次操作,如此
3、一直操作下去,则_十二、填空题12如图,将一块三角板的直角顶点放在直尺的一边上,当2=54时,1=_十三、填空题13如图所示,是用一张长方形纸条折成的,如果,那么_十四、填空题14ab是新规定的这样一种运算法则:ab=a+2b,例如3(2)=3+2(2)=1若(2)x=2+x,则x的值是_十五、填空题15如图,点A(1,0),B(2,0),C是y轴上一点,且三角形ABC的面积为2,则点C的坐标为_十六、填空题16如图,一个粒子在第一象限运动,在第一秒内,它从原点运动到(0,1),接着它按如图所示的横轴、纵轴的平行方向来回运动,即(0,0)(0,1)(1,1)(1,0)(2,0),且每秒移动一个
4、单位,那么粒子运动到点(3,0)时经过了_秒;2014秒时这个粒子所在的位置的坐标为_十七、解答题17计算: (1) (2)十八、解答题18求下列各式中的值:(1);(2);(3)十九、解答题19如图,试说明证明:(已知)_=_(垂直定义)_/_(_)(_)_/_(_)_(平行于同一直线的两条直线互相平行)(_)二十、解答题20如图,一只甲虫在55的方格(每小格边长为1)上沿着网格线运动它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负如果从A到B记为:AB(1,4),从B到A记为:AB(1,4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)AC(
5、 , ),BD( , ),C (1, );(2)若这只甲虫从A处去甲虫P处的行走路线依次为(2,2),(1,1),(2,3),(1,2),请在图中标出P的位置二十一、解答题21实数在数轴上的对应点的位置如图所示,(1)求的值;(2)已知的小数部分是,的小数部分是,求的平方根二十二、解答题22如图,用两个面积为的小正方形纸片剪拼成一个大的正方形(1)大正方形的边长是_;(2)请你探究是否能将此大正方形纸片沿着边的方向裁出一个面积为的长方形纸片,使它的长宽之比为,若能,求出这个长方形纸片的长和宽,若不能,请说明理由二十三、解答题23已知:如图,直线AB/CD,直线EF交AB,CD于P,Q两点,点M
6、,点N分别是直线CD,EF上一点(不与P,Q重合),连接PM,MN (1)点M,N分别在射线QC,QF上(不与点Q重合),当APM+QMN=90时,试判断PM与MN的位置关系,并说明理由;若PA平分EPM,MNQ=20,求EPB的度数(提示:过N点作AB的平行线)(2)点M,N分别在直线CD,EF上时,请你在备用图中画出满足PMMN条件的图形,并直接写出此时APM与QMN的关系(注:此题说理时不能使用没有学过的定理)二十四、解答题24已知,交AC于点E,交AB于点F(1)如图1,若点D在边BC上,补全图形;求证:(2)点G是线段AC上的一点,连接FG,DG若点G是线段AE的中点,请你在图2中补
7、全图形,判断,之间的数量关系,并证明;若点G是线段EC上的一点,请你直接写出,之间的数量关系二十五、解答题25在ABC中,射线AG平分BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DEAC交AB于点E(1)如图1,点D在线段CG上运动时,DF平分EDB若BAC100,C30,则AFD;若B40,则AFD;试探究AFD与B之间的数量关系?请说明理由;(2)点D在线段BG上运动时,BDE的角平分线所在直线与射线AG交于点F试探究AFD与B之间的数量关系,并说明理由【参考答案】一、选择题1B解析:B【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直
8、线(截线)的两旁,则这样一对角叫做内错角根据内错角的边构成“Z”形判断即可【详解】解:由图可知:能看作1的内错角的是3,故选:B【点睛】本题主要考查同位角、内错角、同旁内角的定义,关键是掌握同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U”形2C【分析】根据平移变换的定义可得结论【详解】解:由平移变换的定义可知,选项C可以看作由“基本图案”经过平移得到的故选:C【点睛】本题考查利用平移设计图案,解题的关键是理解平移变换解析:C【分析】根据平移变换的定义可得结论【详解】解:由平移变换的定义可知,选项C可以看作由“基本图案”经过平移得到的故选:C【点睛】本题考查利用平移设计图案
9、,解题的关键是理解平移变换的定义,属于中考基础题3B【分析】根据第四象限的点的横坐标是正数,纵坐标是负数解答【详解】解:A、(3,0)在x轴上,不合题意;B、(2,-5)在第四象限,符合题意;C、(-5,-2)在第三象限,不合题意;D、(-2,3),在第二象限,不合题意故选:B【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4B【分析】根据平行线的判定、对顶角、立方根和实数与数轴关系进行判断即可【详解】解:A、对顶角相等,是真命题;B、8的立方根是2,原
10、命题是假命题;C、实数和数轴上的点是一一对应的,是真命题;D、平行于同一直线的两条直线平行,是真命题;故选:B【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的判定、对顶角、立方根和实数与数轴,属于基础题,难度不大5B【分析】根据ABCD,3130,求得GAB3130,利用平行线的性质求得BAE180GAB18013050,由12 求出答案即可【详解】解:ABCD,3130,GAB3130,BAE+GAB180,BAE180GAB18013050,12, 2BAE5025故选:B【点睛】此题考查平行线的性质:两直线平行同位角相等,两直线平行同旁内角互补,熟记性质定理是解题的关键6A【
11、分析】根据平方根、立方根及算术平方根的概念逐一计算即可得答案【详解】A.,计算正确,故该选项符合题意,B.,故该选项计算错误,不符合题意,C.,故该选项计算错误,不符合题意,D.,故该选项计算错误,不符合题意,故选:A【点睛】本题考查平方根、立方根、算术平方根的概念,熟练掌握定义是解题关键7A【分析】根据直角三角形可求出3的度数,再根据平行线的性质2=3即可得出答案【详解】解:如图所示:直角三角形ABC,C=90,1=54,3=90-1=36,ab,2=3=36故选:A【点睛】本题考查了平行线的性质,熟练掌握平行线的性质,求出3的度数是解题的关键8A【分析】根据图形观察发现,第偶数次跳动至点的
12、坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可【详解】解:如图,解析:A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可【详解】解:如图,观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),第2n次跳动至点的坐标是(n+1,n),则第2020次跳动至点的坐标是(1011,1010),第2021次跳动至点A2
13、021的坐标是(1011,1011)故选:A【点睛】本题考查了规律型:点的坐标,坐标与图形的性,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键九、填空题9【解析】解:有题意得,则解析:【解析】解:有题意得,则十、填空题100 【分析】根据题意结合关于x轴对称点的性质得出关于a,b的等式,进而求出答案【详解】解:点P(3,-1)关于x轴的对称点Q的坐标是(a+b,1-b),a+b=3,1-b=1,解析:0 【分析】根据题意结合关于x轴对称点的性质得出关于a,b的等式,进而求出答案【详解】解:点P(3,-1)关于x轴的对称点Q的坐标是(a+b,1-b),a+b=3,1-b=1,解
14、得:a=3,b=0,故答案为:3,0【点睛】此题主要考查了关于x轴对称点的性质,正确得出a,b的值是解题关键十一、填空题1190 【分析】过P1作P1QAB,则P1QCD,根据平行线的性质得到AEF+CFE=180,AEP1=EP1Q,CFP1=FP1Q,结合角平分线的定义可计算E解析:90 【分析】过P1作P1QAB,则P1QCD,根据平行线的性质得到AEF+CFE=180,AEP1=EP1Q,CFP1=FP1Q,结合角平分线的定义可计算EP1F,再同理求出P2,P3,总结规律可得【详解】解:过P1作P1QAB,则P1QCD,ABCD,AEF+CFE=180,AEP1=EP1Q,CFP1=F
15、P1Q,和的角平分线交于点,EP1F=EP1Q+FP1Q=AEP1+CFP1=(AEF+CFE)=90;同理可得:P2=(AEF+CFE)=45,P3=(AEF+CFE)=22.5,.,故答案为:90,【点睛】本题主要考查了平行线的性质,角平分线的定义,规律性问题,解决问题的关键是作辅助线构造内错角,依据两直线平行,内错角相等进行计算求解十二、填空题1236【分析】如图,根据平行线的性质可得3=2,然后根据平角的定义解答即可【详解】解:如图,三角尺的两边ab,3=2=54,1=180903=36故解析:36【分析】如图,根据平行线的性质可得3=2,然后根据平角的定义解答即可【详解】解:如图,三
16、角尺的两边ab,3=2=54,1=180903=36故答案为:36【点睛】本题以三角板为载体,主要考查了平行线的性质和和平角的定义,属于基础题型,熟练掌握平行线的性质是解题关键十三、填空题1364【分析】如图,根据两直线平行,同旁内角互补求出3,再根据翻折变换的性质列式计算即可得解【详解】解:长方形的对边互相平行,3180118012852,由翻解析:64【分析】如图,根据两直线平行,同旁内角互补求出3,再根据翻折变换的性质列式计算即可得解【详解】解:长方形的对边互相平行,3180118012852,由翻折的性质得,2(1803)(18052)64故答案为:64【点睛】本题考查了平行线的性质,
17、翻折变换的性质,熟记各性质是解题的关键十四、填空题144【解析】根据题意可得(2)x=2+2x,进而可得方程2+2x=2+x,解得:x=4.故答案为:4点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根解析:4【解析】根据题意可得(2)x=2+2x,进而可得方程2+2x=2+x,解得:x=4.故答案为:4点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根据新定义的代数式计算即可.十五、填空题15(0,4)或(0,-4)【分析】设ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答【详解】
18、解:设ABC边AB上的高为h,A(1,0),解析:(0,4)或(0,-4)【分析】设ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答【详解】解:设ABC边AB上的高为h,A(1,0),B(2,0),AB=2-1=1,ABC的面积=1h=2,解得h=4,点C在y轴正半轴时,点C为(0,4),点C在y轴负半轴时,点C为(0,-4),所以,点C的坐标为(0,4)或(0,-4)故答案为:(0,4)或(0,-4)【点睛】本题考查了三角形的面积,坐标与图形性质,求出AB边上的高的长度是解题的关键十六、填空题16(10,44) 【分析】该题是点的坐标规律,通过对部
19、分点分析,发现实质上是数列问题设粒子运动到A1,A2,An时所用的间分别为a1,a2,an,则a1=2,a2=6,a3=12,a4解析:(10,44) 【分析】该题是点的坐标规律,通过对部分点分析,发现实质上是数列问题设粒子运动到A1,A2,An时所用的间分别为a1,a2,an,则a1=2,a2=6,a3=12,a4=20,【详解】解:由题意,粒子运动到点(3,0)时经过了15秒,设粒子运动到A1,A2,An时所用的间分别为a1,a2,an,则a1=2,a2=6,a3=12,a4=20,a2-a1=22,a3-a2=23,a4-a3=24,an-an-1=2n,各式相加得:an-a1=2(2+
20、3+4+n)=n2+n-2,an=n(n+1)4445=1980,故运动了1980秒时它到点A44(44,44);又由运动规律知:A1,A2,An中,奇数点处向下运动,偶数点处向左运动故达到A44(44,44)时向左运动34秒到达点(10,44),即运动了2014秒所求点应为(10,44)故答案为:(10,44)故答案为:15,(10,44)【点睛】本题考查了平面直角坐标系内点的运动规律,分析粒子在第一象限的运动规律得到递推关系式an-an-1=2n是本题的突破口,本题对运动规律的探索可知知:A1,A2,An中,奇数点处向下运动,偶数点处向左运动,找到这个规律是解题的关键十七、解答题17(1)
21、 3;(2) 2【解析】【分析】(1)原式利用平方根及立方根的定义化简,计算即可得到结果;(2)原式第一项利用绝对值的代数意义化简,第二项去括号,合并即可得到结果【详解】解:(1解析:(1) 3;(2) 2【解析】【分析】(1)原式利用平方根及立方根的定义化简,计算即可得到结果;(2)原式第一项利用绝对值的代数意义化简,第二项去括号,合并即可得到结果【详解】解:(1)原式=-(2-4)6+3=+ +3=3;(2)原式= = 故答案为:(1)3;(2) 【点睛】本题考查实数的运算,熟练掌握运算法则是解题的关键十八、解答题18(1);(2);(3)【分析】直接根据平方根的定义逐个解答即可【详解】解
22、:(1),;(2),;(3),【点睛】此题主要考查了平方根的定义,熟练掌握平解析:(1);(2);(3)【分析】直接根据平方根的定义逐个解答即可【详解】解:(1),;(2),;(3),【点睛】此题主要考查了平方根的定义,熟练掌握平方根的定义是解题关键十九、解答题19,90;,同位角相等,两直线平行;已知;,内错角相等,两直线平行;两直线平行,同位角相等【分析】根据平行线的判定定理得到ABCDEF,再由平行线的性质证得结论,据此填空即可【详解】解析:,90;,同位角相等,两直线平行;已知;,内错角相等,两直线平行;两直线平行,同位角相等【分析】根据平行线的判定定理得到ABCDEF,再由平行线的性
23、质证得结论,据此填空即可【详解】证明:(已知),(垂直定义),(同位角相等,两直线平行),(已知),(内错角相等,两直线平行),(平行于同一直线的两条直线互相平行),(两直线平行,同位角相等)故答案为:CDF,90;AB,CD,同位角相等,两直线平行;已知;AB,EF,内错角相等,两直线平行;EF;两直线平行,同位角相等【点睛】本题考查了平行线的判定与性质,熟练掌握性质及判定定理是解题的关键二十、解答题20(1)3,4,3,2,D,2;(2)见解析【分析】(1)根据向上向右走为正,向下向左走为负,可得答案;(2)根据向上向右走为正,向下向左走为负,可得答案【详解】解:(1)AC( 3解析:(1
24、)3,4,3,2,D,2;(2)见解析【分析】(1)根据向上向右走为正,向下向左走为负,可得答案;(2)根据向上向右走为正,向下向左走为负,可得答案【详解】解:(1)AC( 3,4),BD(32),CD(1,2);故答案为3,4;3,2;D,2;(2)这只甲虫从A处去甲虫P处的行走路线依次为(2,2),(1,1),(2,3),(1,2),请在图中标出P的位置,如图【点睛】本题主要考查了用有序实数对表示路线读懂题目信息,正确理解行走路线的记录方法是解题的关键二十一、解答题21(1);(2)【分析】(1)根据A点在数轴上的位置,可以知道2a3,根据a的范围去绝对值化简即可;(2)先求出b2,得到它
25、的整数部分,用b2减去整数部分就是小数部分,从而求出m;同理可解析:(1);(2)【分析】(1)根据A点在数轴上的位置,可以知道2a3,根据a的范围去绝对值化简即可;(2)先求出b2,得到它的整数部分,用b2减去整数部分就是小数部分,从而求出m;同理可求出n然后求出2m2n1,再求平方根【详解】解:(1)由图知:,;(2),整数部分是3,;的整数部分是6,的平方根为【点睛】本题主要考查了无理数的估算,考核学生的运算能力,解题时注意一个正数的平方根有两个二十二、解答题22(1)4;(2)不能,理由见解析【分析】(1)根据已知正方形的面积求出大正方形的边长即可;(2)先设未知数根据面积=14(cm
26、2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再解析:(1)4;(2)不能,理由见解析【分析】(1)根据已知正方形的面积求出大正方形的边长即可;(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再判断即可【详解】解:(1)两个正方形面积之和为:28=16(cm2),拼成的大正方形的面积=16(cm2),大正方形的边长是4cm;故答案为:4;(2)设长方形纸片的长为2xcm,宽为xcm,则2xx=14,解得:,2x=24,不存在长宽之比为且面积为的长方形纸片【点睛】本题考查了算术平方根,能够根据题意列出算式是解此题的关键二十三、解答
27、题23(1)PMMN,理由见解析;EPB的度数为125;(2)APM +QMN=90或APM -QMN=90【分析】(1)利用平行线的性质得到APM=PMQ,再根据已知条解析:(1)PMMN,理由见解析;EPB的度数为125;(2)APM +QMN=90或APM -QMN=90【分析】(1)利用平行线的性质得到APM=PMQ,再根据已知条件可得到PMMN;过点N作NHCD,利用角平分线的定义以及平行线的性质求得MNH=35,即可求解;(2)分三种情况讨论,利用平行线的性质即可解决【详解】解:(1)PMMN,理由见解析:AB/CD,APM=PMQ,APM+QMN=90,PMQ +QMN=90,P
28、MMN;过点N作NHCD,AB/CD,AB/ NHCD,QMN=MNH,EPA=ENH,PA平分EPM,EPA= MPA,APM+QMN=90,EPA +MNH=90,即ENH +MNH=90,MNQ +MNH +MNH=90,MNQ=20,MNH=35,EPA=ENH=MNQ +MNH=55,EPB=180-55=125,EPB的度数为125;(2)当点M,N分别在射线QC,QF上时,如图:PMMN,AB/CD,PMQ +QMN=90,APM=PMQ, APM +QMN=90;当点M,N分别在射线QC,线段PQ上时,如图:PMMN,AB/CD,PMN=90,APM=PMQ, PMQ -QMN
29、=90,APM -QMN=90;当点M,N分别在射线QD,QF上时,如图:PMMN,AB/CD,PMQ +QMN=90,APM+PMQ=180, APM+90-QMN=180,APM -QMN=90;综上,APM +QMN=90或APM -QMN=90【点睛】本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键二十四、解答题24(1)见解析;见解析(2)AFG+EDG=DGF;AFG-EDG=DGF【分析】(1)根据题意画出图形;依据DEAB,DFAC,可得EDF+AFD=180,解析:(1)见解析;见解析(2)A
30、FG+EDG=DGF;AFG-EDG=DGF【分析】(1)根据题意画出图形;依据DEAB,DFAC,可得EDF+AFD=180,A+AFD=180,进而得出EDF=A;(2)过G作GHAB,依据平行线的性质,即可得到AFG+EDG=FGH+DGH=DGF;过G作GHAB,依据平行线的性质,即可得到AFG-EDG=FGH-DGH=DGF【详解】解:(1)如图,DEAB,DFAC,EDF+AFD=180,A+AFD=180,EDF=A;(2)AFG+EDG=DGF如图2所示,过G作GHAB,ABDE,GHDE,AFG=FGH,EDG=DGH,AFG+EDG=FGH+DGH=DGF;AFG-EDG=
31、DGF如图所示,过G作GHAB,ABDE,GHDE,AFG=FGH,EDG=DGH,AFG-EDG=FGH-DGH=DGF【点睛】本题考查了平行线的判定和性质:两直线平行,内错角相等正确的作出辅助线是解题的关键二十五、解答题25(1)115;110;理由见解析;(2);理由见解析【分析】(1)若BAC=100,C=30,由三角形内角和定理求出B=50,由平行线的性质得出EDB=C=30,由解析:(1)115;110;理由见解析;(2);理由见解析【分析】(1)若BAC=100,C=30,由三角形内角和定理求出B=50,由平行线的性质得出EDB=C=30,由角平分线定义得出,由三角形的外角性质得
32、出DGF=100,再由三角形的外角性质即可得出结果;若B=40,则BAC+C=180-40=140,由角平分线定义得出,由三角形的外角性质即可得出结果;由得:EDB=C,由三角形的外角性质得出DGF=B+BAG,再由三角形的外角性质即可得出结论;(2)由(1)得:EDB=C,,由三角形的外角性质和三角形内角和定理即可得出结论【详解】(1)若BAC=100,C=30,则B=180-100-30=50,DEAC,EDB=C=30,AG平分BAC,DF平分EDB,DGF=B+BAG=50+50=100,AFD=DGF+FDG=100+15=115;若B=40,则BAC+C=180-40=140,AG平分BAC,DF平分EDB,DGF=B+BAG,AFD=DGF+FDG=B+BAG+FDG=故答案为:115;110;理由如下:由得:EDB=C,DGF=B+BAG,AFD=DGF+FDG=B+BAG+FDG=;(2)如图2所示:;理由如下:由(1)得:EDB=C,AHF=B+BDH,AFD=180-BAG-AHF【点睛】本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键