1、2022年人教版七7年级下册数学期末综合复习卷含解析一、选择题1如图,与是同位角的是( )ABCD2四根火柴棒摆成如图所示的象形“口”字,平移此象形字火柴棒后,变成的象形文字正确的是()ABCD3已知点P的坐标为,则点P在第( )象限A一B二C三D四4下列命题中,是假命题的是( )A经过一个已知点能画一条且只能画一条直线与已知直线平行B从直线外一点到这条直线的垂线段的长度叫做这点到直线的距离C在同一平面内,一条直线的垂线可以画无数条D连接直线外一点与直线上各点的所有线段中,垂线段最短5如图,直线,三角板的直角顶点在直线上,已知,则等于( )A25B55C65D756下列说法中正确的是()A有理
2、数和数轴上的点一一对应B0.304精确到十分位是0.30C立方根是本身的数只有0D平方根是本身的数只有07如图,ABCD,直线EF分别交AB、CD于点E、F,FH平分EFD,若1110,则2的度数为()A45B40C55D358在平面直角坐标系中,对于点P(x,y),我们把点P(-y+1,x+1)叫做点P伴随点已知点A1的伴随点为A2,点A2的伴随点为A3,点A4的伴随点为A4,这样依次得到点A1,A2,A3,An,若点A1的坐标为(2,4),点A2021的坐标为( )A(-3,3)B(-2,2)C(3,-1)D(2,4)九、填空题9100的算术平方根是_十、填空题10若点P(a,b)关于y轴
3、的对称点是P1 ,而点P1关于x轴的对称点是P ,若点P的坐标为(-3,4),则a=_,b=_十一、填空题11如图,是的两条角平分线,则的度数为_十二、填空题12如图,设,那么,的关系式_十三、填空题13如图,在中,若将沿折叠,使点与点重合,若的周长为的周长为,则_十四、填空题14a是不为2的有理数,我们把2称为a的“文峰数”如:3的“文峰数”是,-2的“文峰数”是,已知a1=3,a2是a1的“文峰数”, a3是a2的“文峰数”, a4是a3的“文峰数”,以此类推,则a2020=_十五、填空题15点到两坐标轴的距离相等,则_十六、填空题16育红中学八五班的数学社团在做如下的探究活动:在平面直角
4、坐标系中,一个智能机器人接到如下指令:从原点O出发,按向上、向右、向下、向右的方向依次移动,每次移动1个单位长度,其移动路线如图所示,第1次移动到点A1,第2次移动到点A2第n次移动到点An,则OA2A2021的面积是 _十七、解答题17计算(每小题4分)(1) (2)(3) (4)+|2 | + ( -1 )2017 十八、解答题18求满足下列各式x的值(1)2x280;(2)(x1)34十九、解答题19完成下面的证明:如图,点、分别是三角形的边、上的点,连接,连接交于点,求证:证明:(已知)(_)又(已知)(_)(_)(_)二十、解答题20如图,在正方形网格中,三角形的三个顶点和点都在格点
5、上(正方形网格的交点称为格点)点,的坐标分别为,平移三角形,使点平移到点,点,分别是,的对应点(1)请画出平移后的三角形,并分别写出点E、F的坐标;(2)求的面积;(3)在轴上是否存在一点,使得,若存在,请求出的坐标,若不存在,请说明理由二十一、解答题21阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而2,于是可用来表示的小数部分请解答下列问题: (1)的整数部分是_,小数部分是_;(2)如果的小数部分为的整数部分为求的值二十二、解答题22如图,用两个面积为的小正方形纸片剪拼成一个大的正方形(1)大正方形的边长是_;(2)请你探究是否
6、能将此大正方形纸片沿着边的方向裁出一个面积为的长方形纸片,使它的长宽之比为,若能,求出这个长方形纸片的长和宽,若不能,请说明理由二十三、解答题23(1)(问题)如图1,若,求的度数;(2)(问题迁移)如图2,点在的上方,问,之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知,的平分线和的平分线交于点,用含有的式子表示的度数二十四、解答题24如图1,E点在BC上,AD,ABCD(1)直接写出ACB和BED的数量关系 ;(2)如图2,BG平分ABE,与CDE的邻补角EDF的平分线交于H点若E比H大60,求E;(3)保持(2)中所求的E不变,如图3,BM平分ABE的邻
7、补角EBK,DN平分CDE,作BPDN,则PBM的度数是否改变?若不变,请求值;若改变,请说理由二十五、解答题25已知,点为射线上一点(1)如图1,写出、之间的数量关系并证明;(2)如图2,当点在延长线上时,求证:;(3)如图3,平分,交于点,交于点,且:,求的度数【参考答案】一、选择题1C解析:C【分析】根据同位角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角即可求解【详解】解:观察图形可知,与1是同位角的是4故选:C【点睛】本题考查了同位角、内错角、同旁内角,三线八角中的某两个角是不是同位角、内错角或同旁内角,完
8、全由那两个角在图形中的相对位置决定在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形2C【分析】根据火柴头的方向、平移的定义即可得【详解】解:此象形字火柴棒中,有两根火柴头朝向左,一根火柴头朝向上,一根火柴头朝向下,因为平移不改变火柴头的朝向,所以观察四个选项可知,只有解析:C【分析】根据火柴头的方向、平移的定义即可得【详解】解:此象形字火柴棒中,有两根火柴头朝向左,一根火柴头朝向上,一根火柴头朝向下,因为平移不改变火柴
9、头的朝向,所以观察四个选项可知,只有选项C符合,故选:C【点睛】本题考查了平移,掌握理解平移的概念是解题关键3B【分析】直接利用第二象限内的点:横坐标小于0,纵坐标大于0,即可得出答案【详解】解:点P的坐标为P(-2,4),点P在第二象限故选:B【点睛】此题主要考查了点的坐标,正确掌握各象限内点的坐标特点是解题关键4A【分析】分别利用平行线以及点到直线的距离以及垂线以及垂线段最短的定义分别分析得出即可【详解】解:、在同一平面内,经过一点(点不在已知直线上)能画一条且只能画一条直线与已知直线平行,故选项错误,符合题意;、从直线外一点到这条直线的垂线段的长叫做点到直线的距离,正确,不符合题意;、一
10、条直线的垂线可以画无数条,正确,不符合题意;、连接直线外一点与直线上各点的所有线段中,垂线段最短,正确,不符合题意;故选:A【点评】此题主要考查了平行线、垂线以及垂线段和点到直线的距离等定义,正确把握相关定义是解题关键5C【分析】利用平行线的性质,可证得2=3,利用已知可证得1+3=90,求出3的度数,进而求出2的度数【详解】解:如图a/b2=3,1+3=180-90=903=90-1=90-25=652=65故选C【点睛】本题主要考查了平行线的性质,灵活运用“两直线平行、同位角相等”是解答本题的关键6D【分析】根据实数与数轴、精确度、立方根及平方根的概念和性质逐项判断即可【详解】解:A. 实
11、数和数轴上的点一一对应,原说法错误;B. 0.304精确到十分位是0.3,原说法错误;C. 立方根是本身的数是0、1,原说法错误;D. 平方根是本身的数只有0,正确,故选:D【点睛】本题考查了实数与数轴、精确度、立方根及平方根的概念和性质,熟练掌握基础知识是解题关键7D【分析】根据对顶角相等求出3,再根据两直线平行,同旁内角互补求出DFE,然后根据角平分线的定义求出DFH,再根据两直线平行,内错角相等解答【详解】解:1=110,3=1=110,ABCD,DFE=180-3=180-110=70,HF平分EFD,DFH=DFE=70=35,ABCD,2=DFH=35故选:D【点睛】本题考查了平行
12、线的性质,角平分线的定义,对顶角相等的性质,是基础题,熟记各性质并准确识图是解题的关键8D【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可【详解】解:A1的坐标为(2,4),解析:D【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可【详解】解:A1的坐标为(2,4),A2(3,3),A3(2,2),A4(3,1),A5(2,4),依此类推,每4个点为一个循环组依次循环,202145051,点A2021的坐标
13、与A1的坐标相同,为(2,4)故选:D【点睛】本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键九、填空题910【分析】根据算术平方根的定义进行计算,即可得到答案【详解】解:102100,10故答案为:10【点睛】本题考查了算术平方根的定义,解题的关键是熟练掌握定义解析:10【分析】根据算术平方根的定义进行计算,即可得到答案【详解】解:102100,10故答案为:10【点睛】本题考查了算术平方根的定义,解题的关键是熟练掌握定义十、填空题10a=3 b=-4 【分析】先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值
14、【详解】由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-解析:a=3 b=-4 【分析】先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值【详解】由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-3,-4),点P(a,b)关于y轴对称的点是P1,则P点的坐标为(3,-4),则a=3,b=-4.【点睛】此题考查关于x轴、y轴对称的点的坐标,难度不大十一、填空题11140【分析】ABC中,已知A即可得到ABC与ACB的和,而BO和CO分别是ABC,ACB的两条角平分线,即可求得OBC与OCB的度数,根据三角形的内角和定理即可求解【
15、详解析:140【分析】ABC中,已知A即可得到ABC与ACB的和,而BO和CO分别是ABC,ACB的两条角平分线,即可求得OBC与OCB的度数,根据三角形的内角和定理即可求解【详解】ABC中,ABCACB180A18010080,BO、CO是ABC,ACB的两条角平分线OBCABC,OCBACB,OBCOCB(ABCACB)40,在OBC中,BOC180(OBCOCB)140故填:140【点睛】本题主要考查了三角形的内角和定理,以及三角形的角平分线的定义十二、填空题12【分析】过作,过作,根据平行线的性质可知,然后根据平行线的性质即可求解;【详解】如图,过作,过作,故答案为:【点睛】本题考查了
16、平解析:【分析】过作,过作,根据平行线的性质可知,然后根据平行线的性质即可求解;【详解】如图,过作,过作,故答案为:【点睛】本题考查了平行线的性质,两直线平行同位角相等,两直线平行内错角相等,正确理解平行线的性质是解题的关键;十三、填空题13【分析】根据翻折得到,根据,即可求出AC,再根据E是中点即可求解【详解】沿翻折使与重合故答案为:【点睛】此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性解析:【分析】根据翻折得到,根据,即可求出AC,再根据E是中点即可求解【详解】沿翻折使与重合故答案为:【点睛】此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性质十四、填空题14【
17、分析】先根据题意求得、,发现规律即可求解【详解】解:a1=3,该数列为每4个数为一周期循环,a2020=故答案为:【点睛】此题主要考查规律的探索,解析:【分析】先根据题意求得、,发现规律即可求解【详解】解:a1=3,该数列为每4个数为一周期循环,a2020=故答案为:【点睛】此题主要考查规律的探索,解题的关键是根据题意发现规律十五、填空题15或【分析】根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可【详解】解:点到两坐标轴的距离相等,或,解得,或,故答案为:或【点睛】本题考查了点到坐标轴的距解析:或【分析】根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可【详解】解:
18、点到两坐标轴的距离相等,或,解得,或,故答案为:或【点睛】本题考查了点到坐标轴的距离,解题关键是明确到坐标轴的距离是坐标的绝对值十六、填空题16【分析】由题意知OA4n2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题【详解】解:由题意知OA4n2n(n为正整数),图形运动4次一个循环解析:【分析】由题意知OA4n2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题【详解】解:由题意知OA4n2n(n为正整数),图形运动4次一个循环,横坐标对应一个循环增加2202145051,A2021与A1是对应点,A2020
19、与A0是对应点OA202050521010,A1A20211010A2A20211010-1=1009则OA2A2019的面积是11009,故答案为:【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得十七、解答题17(1)0;(2);(3)1;(4)3.【分析】(1)先算根号和平方,再根据实数的加减运算计算即可得出答案;(2)先去绝对值,再根据实数的加减运算法则计算即可得出答案;(3)先算绝对值、立方根解析:(1)0;(2);(3)1;(4)3.【分析】(1)先算根号和平方,再根据实数的加减运算计算即可得出答案;(2)先去绝对值,再
20、根据实数的加减运算法则计算即可得出答案;(3)先算绝对值、立方根和乘方,再根据实数的加减运算法则计算即可得出答案;(4)先算根号、绝对值和乘方,再根据实数的加减运算法则计算即可得出答案.【详解】解:(1)原式=-3+4-3=-2 (2)原式=(3)原式=2+(-2)+1=1 (4)原式=2+2-1=3【点睛】本题考查的是实数的运算,难度不大,需要熟练掌握实数的加减运算法则.十八、解答题18(1)或者;(2)【分析】(1)根据求一个数的平方根解方程(2)根据求一个数的立方根解方程【详解】(1)2x280,解得或者;(2)(x1)34,解得【解析:(1)或者;(2)【分析】(1)根据求一个数的平方
21、根解方程(2)根据求一个数的立方根解方程【详解】(1)2x280,解得或者;(2)(x1)34,解得【点睛】本题考查了求一个数的平方根和立方根,掌握平方根和立方根的概念是解题的关键十九、解答题19两直线平行,同位角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补【分析】根据平行线的性质与判定进行证明即可得到答案【详解】证明:(已知)(两直线平行,同位角相等)解析:两直线平行,同位角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补【分析】根据平行线的性质与判定进行证明即可得到答案【详解】证明:(已知)(两直线平行,同位角相等)又(已知)(等量代换)(同位角相等,两
22、直线平行)(两直线平行,同旁内角互补)【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解二十、解答题20(1)画图见解析,E(2,-2),F(6,-1);(2)7;(3)(10,0)或(-18,0)【分析】(1)根据平移的性质即可画出平移后的三角形DEF,并写出点E,F的坐标;(2)利用割补法计解析:(1)画图见解析,E(2,-2),F(6,-1);(2)7;(3)(10,0)或(-18,0)【分析】(1)根据平移的性质即可画出平移后的三角形DEF,并写出点E,F的坐标;(2)利用割补法计算即可;(3)根据ABC的面积得到BCM的面积,从而计算出BM,可得点M
23、的坐标;【详解】解:(1)如图,三角形DEF即为所求,点E(2,-2),F(6,-1);(2)SABC=7;(3),点C的坐标为(0,1),BM=,B(-4,0),点M的坐标为(10,0)或(-18,0)【点睛】本题考查了作图-平移变换,三角形的面积,解决本题的关键是掌握平移的性质二十一、解答题21(1)5;-5(2)0【分析】(1)先估算出的范围,即可得出答案;(2)先估算出、的范围,求出a、b的值,再代入求出即可【详解】(1)56,的整数部分是5,小数部分是-5,故解析:(1)5;-5(2)0【分析】(1)先估算出的范围,即可得出答案;(2)先估算出、的范围,求出a、b的值,再代入求出即可
24、【详解】(1)56,的整数部分是5,小数部分是-5,故答案为:5;-5;(2)34,a-3,34,b3,-3+3-=0【点睛】本题考查了估算无理数的大小,能估算出、的范围是解此题的关键二十二、解答题22(1)4;(2)不能,理由见解析【分析】(1)根据已知正方形的面积求出大正方形的边长即可;(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再解析:(1)4;(2)不能,理由见解析【分析】(1)根据已知正方形的面积求出大正方形的边长即可;(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再判断即可【详
25、解】解:(1)两个正方形面积之和为:28=16(cm2),拼成的大正方形的面积=16(cm2),大正方形的边长是4cm;故答案为:4;(2)设长方形纸片的长为2xcm,宽为xcm,则2xx=14,解得:,2x=24,不存在长宽之比为且面积为的长方形纸片【点睛】本题考查了算术平方根,能够根据题意列出算式是解此题的关键二十三、解答题23(1)90;(2)PFC=PEA+P;(3)G=【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PNAB,则PNCD,可得FPN=PEA+FPE,进而可得PF解析:(1)90;(2)PFC=PEA+P;(3)G=【分析】(1)根据平行线的性质与判定可求解;
26、(2)过P点作PNAB,则PNCD,可得FPN=PEA+FPE,进而可得PFC=PEA+FPE,即可求解;(3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得GEF+GFEPEA+PFC+OEF+OFE,由(2)得PEA=PFC-,由OFE+OEF=180-FOE=180-PFC可求解【详解】解:(1)如图1,过点P作PMAB,1=AEP又AEP=40,1=40ABCD, PMCD, 2+PFD=180PFD=130,2=180-130=501+2=40+50=90即EPF=90(2)PFC=PEA+P理由:过P点作PNAB,则PNCD,PEA=NPE,FPN=NPE+FPE,FP
27、N=PEA+FPE,PNCD,FPN=PFC,PFC=PEA+FPE,即PFC=PEA+P;(3)令AB与PF交点为O,连接EF,如图3在GFE中,G=180-(GFE+GEF),GEFPEA+OEF,GFEPFC+OFE,GEF+GFEPEA+PFC+OEF+OFE,由(2)知PFC=PEA+P,PEA=PFC-,OFE+OEF=180-FOE=180-PFC,GEF+GFE(PFC)+PFC+180PFC180,G180(GEF+GFE)180180+【点睛】本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键二十四、解答题24(1)ACB+BED=180;(2)100;
28、(3)40【分析】(1)如图1,延长DE交AB于点F,根据ABCD可得DFB=D,则DFB=A,可得ACDF,根据平行线的性质得A解析:(1)ACB+BED=180;(2)100;(3)40【分析】(1)如图1,延长DE交AB于点F,根据ABCD可得DFB=D,则DFB=A,可得ACDF,根据平行线的性质得ACB+CEF=180,由对顶角相等可得结论;(2)如图2,作EMCD,HNCD,根据ABCD,可得ABEMHNCD,根据平行线的性质得角之间的关系,再根据DEB比DHB大60,列出等式即可求DEB的度数;(3)如图3,过点E作ESCD,设直线DF和直线BP相交于点G,根据平行线的性质和角平
29、分线定义可求PBM的度数【详解】解:(1)如图1,延长交于点,故答案为:;(2)如图2,作,平分,平分,设,比大,解得的度数为;(3)的度数不变,理由如下:如图3,过点作,设直线和直线相交于点,平分,平分,由(2)可知:,【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质二十五、解答题25(1),证明见解析;(2)证明见解析;(3)【分析】(1)过E作EHAB,根据两直线平行,内错角相等,即可得出AED=AEH+DEH=EAF+EDG; (2)设CD与AE交于点H解析:(1),证明见解析;(2)证明见解析;(3)【分析】(1)过E作EHAB,根据两直线平行,内错角相等,即可得出A
30、ED=AEH+DEH=EAF+EDG; (2)设CD与AE交于点H,根据EHG是DEH的外角,即可得出EHG=AED+EDG,进而得到EAF=AED+EDG; (3)设EAI=BAI=,则CHE=BAE=2,进而得出EDI=+10,CDI=+5,再根据CHE是DEH的外角,可得CHE=EDH+DEK,即2=+5+10+20,求得=70,即可根据三角形内角和定理,得到EKD的度数【详解】解:(1)AED=EAF+EDG理由:如图1,过E作EHAB, ABCD, ABCDEH, EAF=AEH,EDG=DEH, AED=AEH+DEH=EAF+EDG; (2)证明:如图2,设CD与AE交于点H,
31、ABCD, EAF=EHG, EHG是DEH的外角, EHG=AED+EDG, EAF=AED+EDG; (3)AI平分BAE, 可设EAI=BAI=,则BAE=2, 如图3,ABCD, CHE=BAE=2, AED=20,I=30,DKE=AKI, EDI=+30-20=+10, 又EDI:CDI=2:1, CDI=EDK=+5, CHE是DEH的外角, CHE=EDH+DEK, 即2=+5+10+20, 解得=70, EDK=70+10=80, DEK中,EKD=180-80-20=80【点睛】本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解解题时注意:三角形的一个外角等于和它不相邻的两个内角的和