收藏 分销(赏)

2022年人教版中学七7年级下册数学期末复习卷附解析.doc

上传人:天**** 文档编号:1894969 上传时间:2024-05-11 格式:DOC 页数:27 大小:692.54KB
下载 相关 举报
2022年人教版中学七7年级下册数学期末复习卷附解析.doc_第1页
第1页 / 共27页
2022年人教版中学七7年级下册数学期末复习卷附解析.doc_第2页
第2页 / 共27页
2022年人教版中学七7年级下册数学期末复习卷附解析.doc_第3页
第3页 / 共27页
2022年人教版中学七7年级下册数学期末复习卷附解析.doc_第4页
第4页 / 共27页
2022年人教版中学七7年级下册数学期末复习卷附解析.doc_第5页
第5页 / 共27页
点击查看更多>>
资源描述

1、2022年人教版中学七7年级下册数学期末复习卷附解析一、选择题19的算术平方根是()A-3B3CD2下列现象中,()是平移A“天问”探测器绕火星运动B篮球在空中飞行C电梯的上下移动D将一张纸对折3已知点P的坐标为P(3,5),则点P在第()象限A一B二C三D四4在以下三个命题中,正确的命题有( )a,b,c是三条不同的直线,若a与b相交,b与c相交,则a与c相交a,b,c是三条不同的直线,若ab,bc,则ac若与互补,与互补,则a与互补ABCD5如图,已知平分,平分,下列结论正确的有( );若,则A1个B2个C3个D4个6下列计算正确的是( )ABCD7如图,已知直线,点为直线上一点,为射线上

2、一点若,交于点,则的度数为( ) A45B55C60D758如图,长方形的各边分别平行于轴、轴,物体甲和物体乙由点同时出发,沿长方形的边做环绕运动,物体甲按逆时针方向以每秒1个单位长度的速度匀速运动,物体乙按顺时针方向以每秒2个单位长度的速度匀速运动则两个物体运动后的第2021次相遇地点的坐标是( )ABCD九、填空题9的算术平方根为_;十、填空题10已知点与点关于轴对称,那么_.十一、填空题11如图,在ABC中,CD是它的角平分线,DEAC于点 E若BC6cm,DE2cm,则BCD的面积为_cm2十二、填空题12如图,折叠宽度相等的长方形纸条,若1=54,则2=_度十三、填空题13如图,将A

3、BC沿直线AC翻折得到ADC,连接BD交AC于点E,AF为ACD的中线,若BE2,AE3,AFC的面积为2,则CE=_十四、填空题14大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分,于是可以用表示的小数部分若,其中x是整数,且,写出xy的相反数_十五、填空题15平面直角坐标系中,已知点A(2,0),B(0,3),点P(m,n)为第三象限内一点,若PAB的面积为18,则m,n满足的数量关系式为_十六、填空题16如图,动点在平面直角坐标系中按图中的箭头所示方向运动,第一次从原点运动到点,第次运动到点,第次接

4、着运动到点按这样的运动规律,经过第次运动后动点的坐标是_十七、解答题17计算: (1) (2)十八、解答题18求下列各式中的x值:(1)(x1)24;(2)(2x+1)3+640;(3)x33十九、解答题19如图,1+2180,CD求证:ADBC证明:1+2180,2+AED180,1AED( ),AC ( ),DDAF( )CD,DAF (等量代换)ADBC( )二十、解答题20已知:如图,ABC的位置如图所示:(每个方格都是边长为个单位长度的正方形,ABC的顶点都在格点上),点A,B,C的坐标分别为(1,0),(5,0),(1,5)(1)请在图中画出坐标轴,建立直角坐标系;(2)点P(m,

5、n)是ABC内部一点,平移ABC,点P随ABC一起平移,点A落在A(0,4),点P落在P(n,6),求点P的坐标并直接写出平移过程中线段PC扫过的面积二十一、解答题21阅读下面文字:我们知道:是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,于是小明用来表示的小数部分,事实上小明的表示法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:由“平方与开平方互为逆运算”可知:,即,的整数部分是2,小数部分是(1)的整数部分是_,小数部分是_;(2)如果的小数部分是a,整数部分是b,求的值;(3)已知,其中x是整数,且,求二十二、解答题22有一块正方形

6、钢板,面积为16平方米(1)求正方形钢板的边长(2)李师傅准备用它裁剪出一块面积为12平方米的长方形工件,且要求长宽之比为,问李师傅能办到吗?若能,求出长方形的长和宽;若不能,请说明理由(参考数据:,)二十三、解答题23已知,点在与之间(1)图1中,试说明:;(2)图2中,的平分线与的平分线相交于点,请利用(1)的结论说明:(3)图3中,的平分线与的平分线相交于点,请直接写出与之间的数量关系二十四、解答题24已知直线,点分别为, 上的点(1)如图1,若, ,求与的度数;(2)如图2,若, ,则_;(3)若把(2)中“, ”改为“, ”,则_(用含的式子表示)二十五、解答题25已知ABCD,点E

7、是平面内一点,CDE的角平分线与ABE的角平分线交于点F(1)若点E的位置如图1所示 若ABE=60,CDE=80,则F= ; 探究F与BED的数量关系并证明你的结论; (2)若点E的位置如图2所示,F与BED满足的数量关系式是 (3)若点E的位置如图3所示,CDE 为锐角,且,设F=,则的取值范围为 【参考答案】一、选择题1B解析:B【分析】根据算术平方根的概念可直接进行求解【详解】解:,9的算术平方根是3;故选B【点睛】本题主要考查算术平方根,熟练掌握求一个数的算术平方根是解题的关键2C【分析】根据平移的定义,对选项进行一一分析,排除错误答案在平面内,把一个图形整体沿某一的方向移动,这种图

8、形的平行移动,叫做平移变换,简称平移【详解】解:A. “天问”探测器绕火星运动不解析:C【分析】根据平移的定义,对选项进行一一分析,排除错误答案在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移【详解】解:A. “天问”探测器绕火星运动不是平移,故此选项不符合题意; B. 篮球在空中飞行不是平移,故此选项不符合题意;C. 电梯的上下移动是平移,故此选项符合题意; D. 将一张纸对折不是平移,故此选项不符合题意故选:C【点睛】本题考查平移的概念,与实际生活相联系,注意分清与旋转、翻转的区别3D【分析】直接利用第四象限内的点横坐标大于0,纵坐标小于0解答即可【详解

9、】解:点P的坐标为P(3,5),点P在第四象限故选D【点睛】本题主要考查了点的坐标,各象限坐标特点如下:第一象限(+,+),第二象限(-,+)第三象限(-,-)第一象限(+,-)4A【分析】根据直线与直线的位置关系、平行线的判定定理和同角的补角相等逐一判断即可【详解】解:a,b,c是三条不同的直线,若a与b相交,b与c相交,则a与c不一定相交,如下图所示,故错误;a,b,c是三条不同的直线,若ab,bc,则ac,故正确;若与互补,与互补,则a与相等,故错误综上:正确的命题是故选A【点睛】此题考查的是直线的位置关系的判断和补角的性质,掌握直线与直线的位置关系、平行线的判定定理和同角的补角相等是解

10、决此题的关键5C【分析】由三个已知条件可得ABCD,从而正确;由及平行线的性质则可推得正确;由条件无法推出ACBD,可知错误;由及平分,可得ACP=E,得ACBD,从而由平行线的性质易得,即正确【详解】平分,平分ACD=2ACP=22,CAB=21=2CAP ACD+CAB=2(1+2)=290=180故正确ABE=CDBCDB+CDF=180故正确由已知条件无法推出ACBD故错误,ACD=2ACP=22ACP=EACBDCAP=FCAB=21=2CAP故正确故正确的序号为故选:C【点睛】本题考查了平行线的判定与性质,角平分线的定义,掌握这些知识是关键6D【分析】分别根据算术平方根的定义以及立

11、方根的定义逐一判断即可【详解】解:A、,故本选项不合题意;B、,故本选项不合题意;C、,故本选项不合题意;D、,故本选项符合题意;故选:D【点睛】本题主要考查算术平方根及立方根,熟练掌握求一个数的算术平方根及立方根是解题的关键7C【分析】利用,及平行线的性质,得到,再借助角之间的比值,求出,从而得出的大小【详解】解:,故选:【点睛】本题考查了平行线的性质的综合应用,涉及的知识点有:平行线的性质、邻补角、三角形的内角和等知识,体现了数学的转化思想、见比设元等思想8A【分析】根据两个物体运动速度和矩形周长,得到两个物体的相遇时间间隔,进而得到两个点相遇的位置规律【详解】解:由已知,矩形周长为12,

12、甲、乙速度分别为1单位/秒,2单位/秒则两个物体解析:A【分析】根据两个物体运动速度和矩形周长,得到两个物体的相遇时间间隔,进而得到两个点相遇的位置规律【详解】解:由已知,矩形周长为12,甲、乙速度分别为1单位/秒,2单位/秒则两个物体每次相遇时间间隔为秒,则两个物体相遇点依次为(-1,1)、(-1,-1)、(2,0),2021=3673+2,第2021次两个物体相遇位置为(-1,-1),故选:A【点睛】本题为平面直角坐标系内的动点坐标规律探究题,解答关键是找到两个物体相遇的位置的变化规律九、填空题9【分析】先求出的值,然后再化简求值即可【详解】解:,2的算术平方根是,的算术平方根是故答案为【

13、点睛】本题考查了算术平方根的定义,灵活运用算术平方根的定义的定义求解是解答解析:【分析】先求出的值,然后再化简求值即可【详解】解:,2的算术平方根是,的算术平方根是故答案为【点睛】本题考查了算术平方根的定义,灵活运用算术平方根的定义的定义求解是解答本题的关键,直接求解是本题的易错点十、填空题100;【分析】平面直角坐标系中任意一点,关于轴的对称点的坐标是,依此列出关于的方程求解即可【详解】解:根据对称的性质,得,解得故答案为:0【点睛】考查了关于轴、轴对称的点的坐标,解析:0;【分析】平面直角坐标系中任意一点,关于轴的对称点的坐标是,依此列出关于的方程求解即可【详解】解:根据对称的性质,得,解

14、得故答案为:0【点睛】考查了关于轴、轴对称的点的坐标,这一类题目是需要识记的基础题,解决的关键是对知识点的正确记忆十一、填空题116【分析】根据角平分线的性质计算即可;【详解】作,CD是角平分线,DEAC,又BC6cm,;故答案是6【点睛】本题主要考查了角平分线的性质,准确计算是解题的关解析:6【分析】根据角平分线的性质计算即可;【详解】作,CD是角平分线,DEAC,又BC6cm,;故答案是6【点睛】本题主要考查了角平分线的性质,准确计算是解题的关键十二、填空题1272【分析】根据平行线的性质可得,由折叠的性质可知,由平角的定义即可求得【详解】解:如图,长方形的两边平行,折叠,故答案为:【点睛

15、】本题考查了平行线的性质,折叠的解析:72【分析】根据平行线的性质可得,由折叠的性质可知,由平角的定义即可求得【详解】解:如图,长方形的两边平行,折叠,故答案为:【点睛】本题考查了平行线的性质,折叠的性质,掌握以上知识是解题的关键十三、填空题13【分析】根据已知条件以及翻折的性质,先求得S四边形ABCD,根据S四边形ABCD,即可求得,进而求得【详解】AF为ACD的中线,AFC的面积为2,SACD2SAFC4,解析:【分析】根据已知条件以及翻折的性质,先求得S四边形ABCD,根据S四边形ABCD,即可求得,进而求得【详解】AF为ACD的中线,AFC的面积为2,SACD2SAFC4,ABC沿直线

16、AC翻折得到ADC,SABCSADC,BDAC,BEED,S四边形ABCD8,BE2,AE3,BD4,AC4,CEACAE431故答案为1【点睛】本题考查了三角形中线的性质,翻折的性质,利用四边形的等面积法求解是解题的关键十四、填空题14【分析】根据题意得方法,估算的大小,求出的值,进而求出xy的值,再通过相反数的定义,即可得到答案【详解】解:的整数部分是2由题意可得的整数部分即,则小数部分则xy的相反解析:【分析】根据题意得方法,估算的大小,求出的值,进而求出xy的值,再通过相反数的定义,即可得到答案【详解】解:的整数部分是2由题意可得的整数部分即,则小数部分则xy的相反数为故答案为【点睛】

17、本题主要考查二次根式的估算,解题的关键是估算无理数的小数部分和整数部分十五、填空题15【分析】连接OP,将DPAB的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答【详解】解:连接OP,如图:A(2,0),B(0,3),OA=2,OB=3,解析:【分析】连接OP,将DPAB的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答【详解】解:连接OP,如图:A(2,0),B(0,3),OA=2,OB=3,AOB=90,点P(m,n)为第三象限内一点,整理可得:;故答案为:【点睛】本题考查的是平面直角坐标系中面积的求解,要注意在计算面积的时候,可根据题意适

18、当添加辅助线,帮助自己分割图形十六、填空题16【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可【详解】解:根据动点在平面直角坐标系中按图中箭头所示方向运动解析:【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可【详解】解:根据动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,第4次运动到点,第5次接着运动到点,横坐标为运动次数的2倍,经过第2021次运动后,动点的横坐标为4042,

19、纵坐标为2,0,1,0,每4次一轮,经过第2021次运动后,故动点的纵坐标为2,经过第2021次运动后,动点的坐标是故答案为:【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键十七、解答题17(1) 3;(2) 2【解析】【分析】(1)原式利用平方根及立方根的定义化简,计算即可得到结果;(2)原式第一项利用绝对值的代数意义化简,第二项去括号,合并即可得到结果【详解】解:(1解析:(1) 3;(2) 2【解析】【分析】(1)原式利用平方根及立方根的定义化简,计算即可得到结果;(2)原式第一项利用绝对值的代数意义化简,第二项去括号,合并

20、即可得到结果【详解】解:(1)原式=-(2-4)6+3=+ +3=3;(2)原式= = 故答案为:(1)3;(2) 【点睛】本题考查实数的运算,熟练掌握运算法则是解题的关键十八、解答题18(1)x3或x1;(2)x2.5;(3)x1.5【分析】(1)直接开平方进行解答;(2)先移项,再开立方进行解答(3)先移项,系数化为1,再开平方法进行解答【详解】解:(解析:(1)x3或x1;(2)x2.5;(3)x1.5【分析】(1)直接开平方进行解答;(2)先移项,再开立方进行解答(3)先移项,系数化为1,再开平方法进行解答【详解】解:(1)开方得:x12或x12,解得:x3或x1;(2)方程整理得:(

21、2x+1)364,开立方得:2x+14,解得:x2.5;(3)方程整理得:x3,开立方得:x1.5【点睛】本题考查了平方根和立方根的概念注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0十九、解答题19同角的补角相等;DE;内错角相等,两直线平行;两直线平行,内错角相等;C;同位角相等,两直线平行【分析】根据平行线的判定和性质定理即可得到结论【详解】证明:,(同角的补角相等),解析:同角的补角相等;DE;内错角相等,两直线平行;两直线平行,内错角相等;C;同位角相等,两直线平行【分析】根据平行线的

22、判定和性质定理即可得到结论【详解】证明:,(同角的补角相等),(内错角相等,两直线平行),(两直线平行,内错角相等),(等量代换),(同位角相等,两直线平行)故答案为:同角的补角相等;DE;内错角相等,两直线平行;两直线平行,内错角相等;同位角相等,两直线平行【点睛】本题考查了平行线的判定与性质,熟记“内错角相等,两直线平行”、“同位角相等,两直线平行”及“两直线平行,内错角相等”是解题的关键二十、解答题20(1)见解析;(2)点P的坐标为(1,2);线段PC扫过的面积为【分析】(1)根据点的坐标确定平面直角坐标系即可;(2)根据平移的规律求得m、n的值,可求得点P的坐标,再利用平行四边形的性

23、质解析:(1)见解析;(2)点P的坐标为(1,2);线段PC扫过的面积为【分析】(1)根据点的坐标确定平面直角坐标系即可;(2)根据平移的规律求得m、n的值,可求得点P的坐标,再利用平行四边形的性质可求得线段PC扫过的面积【详解】解:(1)平面直角坐标系如图所示:(2)因为点A(1,0)落在A(0,4),同时点P(m,n)落在P(n,6),解得,点P的坐标为(1,2);如图,线段PC扫过的面积即为平行四边形PCCP的面积,线段PC扫过的面积为【点睛】本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型二十一、解答题21(1)3,;(2);(3)【分析】(

24、1)先估算出的范围,再求出即可;(2)先估算出和的范围,再求出a、b的值,最后求出代数式的值即可;(3)先求出10+的范围,再求出x、y的值,最后代入求出解析:(1)3,;(2);(3)【分析】(1)先估算出的范围,再求出即可;(2)先估算出和的范围,再求出a、b的值,最后求出代数式的值即可;(3)先求出10+的范围,再求出x、y的值,最后代入求出即可【详解】解:(1),34,的整数部分是3,小数部分是-3,故答案为:3,-3;(2),23,67,a=-2,b=6,;(3)12,1112,x=11,y=,【点睛】本题考查了估算无理数的大小和求代数式的值,能估算出无理数的大小是解此题的关键二十二

25、、解答题22(1)4米 (2)见解析【分析】(1)根据正方形边长与面积间的关系求解即可;(2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论.【详解】解解析:(1)4米 (2)见解析【分析】(1)根据正方形边长与面积间的关系求解即可;(2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论.【详解】解:(1)正方形的面积是16平方米,正方形钢板的边长是米;(2)设长方形的长宽分别为米、米,则,长方形长是米,而正方形的边长为4米,所以李师傅不能办到.【点睛】本题考查了算术平方根的实际应用,灵活的利用算术平方根表示

26、正方形和长方形的边长是解题的关键.二十三、解答题23(1)说明过程请看解答;(2)说明过程请看解答;(3)BED=360-2BFD【分析】(1)图1中,过点E作EGAB,则BEG=ABE,根据ABCD,EGAB,所以CDEG,解析:(1)说明过程请看解答;(2)说明过程请看解答;(3)BED=360-2BFD【分析】(1)图1中,过点E作EGAB,则BEG=ABE,根据ABCD,EGAB,所以CDEG,所以DEG=CDE,进而可得BED=ABE+CDE;(2)图2中,根据ABE的平分线与CDE的平分线相交于点F,结合(1)的结论即可说明:BED=2BFD;(3)图3中,根据ABE的平分线与CD

27、E的平分线相交于点F,过点E作EGAB,则BEG+ABE=180,因为ABCD,EGAB,所以CDEG,所以DEG+CDE=180,再结合(1)的结论即可说明BED与BFD之间的数量关系【详解】解:(1)如图1中,过点E作EGAB,则BEG=ABE,因为ABCD,EGAB,所以CDEG,所以DEG=CDE,所以BEG+DEG=ABE+CDE,即BED=ABE+CDE;(2)图2中,因为BF平分ABE,所以ABE=2ABF,因为DF平分CDE,所以CDE=2CDF,所以ABE+CDE=2ABF+2CDF=2(ABF+CDF),由(1)得:因为ABCD,所以BED=ABE+CDE,BFD=ABF+

28、CDF,所以BED=2BFD(3)BED=360-2BFD图3中,过点E作EGAB,则BEG+ABE=180,因为ABCD,EGAB,所以CDEG,所以DEG+CDE=180,所以BEG+DEG=360-(ABE+CDE),即BED=360-(ABE+CDE),因为BF平分ABE,所以ABE=2ABF,因为DF平分CDE,所以CDE=2CDF,BED=360-2(ABF+CDF),由(1)得:因为ABCD,所以BFD=ABF+CDF,所以BED=360-2BFD【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质二十四、解答题24(1)120,120;(2)160;(3)【分析】(

29、1)过点作,根据 ,平行线的性质和周角可求出,则 ,再根据 , ,可得 , ,可求出 ,根据 即可得到结果;(2)同理(1)的求法,解析:(1)120,120;(2)160;(3)【分析】(1)过点作,根据 ,平行线的性质和周角可求出,则 ,再根据 , ,可得 , ,可求出 ,根据 即可得到结果;(2)同理(1)的求法,根据, 求解即可;(3)同理(1)的求法,根据, 求解即可;【详解】解:(1)如图示,分别过点作, ,又,(2)如图示,分别过点作, ,又,故答案为:160;(3)同理(1)的求法, ,又, ,故答案为:【点睛】本题主要考查了平行线的性质和角度的运算,熟悉相关性质是解题的关键二

30、十五、解答题25(1)70;F=BED,证明见解析;(2)2F+BED=360;(3)【分析】(1)过F作FG/AB,利用平行线的判定和性质定理得到DFB=DFG+BFG=CDF+A解析:(1)70;F=BED,证明见解析;(2)2F+BED=360;(3)【分析】(1)过F作FG/AB,利用平行线的判定和性质定理得到DFB=DFG+BFG=CDF+ABF,利用角平分线的定义得到ABE+CDE=2ABF+2CDF=2(ABF+CDF),求得ABF+CDF=70,即可求解;分别过E、F作EN/AB,FM/AB,利用平行线的判定和性质得到BED=ABE+CDE,利用角平分线的定义得到BED=2(A

31、BF+CDF),同理得到F=ABF+CDF,即可求解;(2)根据ABE的平分线与CDE的平分线相交于点F,过点E作EGAB,则BEG+ABE=180,因为ABCD,EGAB,所以CDEG,所以DEG+CDE=180,再结合的结论即可说明BED与BFD之间的数量关系;(3)通过对的计算求得,利用角平分线的定义以及三角形外角的性质求得,即可求得【详解】(1)过F作FG/AB,如图:ABCD,FGAB,CDFG,ABF=BFG,CDF=DFG,DFB=DFG+BFG=CDF+ABF,BF平分ABE,ABE=2ABF,DF平分CDE,CDE=2CDF,ABE+CDE=2ABF+2CDF=2(ABF+C

32、DF)=60+80=140,ABF+CDF=70,DFB=ABF+CDF=70,故答案为:70;F=BED, 理由是:分别过E、F作EN/AB,FM/AB,EN/AB,BEN=ABE,DEN=CDE,BED=ABE+CDE,DF、BF分别是CDE的角平分线与ABE的角平分线,ABE=2ABF,CDE=2CDF,即BED=2(ABF+CDF);同理,由FM/AB,可得F=ABF+CDF,F=BED;(3)2F+BED=360如图,过点E作EGAB,则BEG+ABE=180,ABCD,EGAB,CDEG,DEG+CDE=180,BEG+DEG=360-(ABE+CDE),即BED=360-(ABE+CDE),BF平分ABE,ABE=2ABF,DF平分CDE,CDE=2CDF,BED=360-2(ABF+CDF),由得:BFD=ABF+CDF,BED=360-2BFD,即2F+BED=360;(3),F=,解得:,如图,CDE 为锐角,DF是CDE的角平分线,CDH=DHB,FDHB,即,故答案为:【点睛】本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服