资源描述
2023年人教版中学七7年级下册数学期末综合复习卷含解析
一、选择题
1.如图,已知直线a,b被直线c所截,下列有关与说法正确的是( )
A.与是同位角 B.与是内错角
C.与是同旁内角 D.与是对顶角
2.下列汽车商标图案中,可以由一个“基本图案”通过连续平移得到的是( )
A. B. C. D.
3.若点P在x轴的下方,y轴的右方,到x轴、y轴的距离分别是3和4,则点P的坐标为( )
A.(4,﹣3) B.(﹣4,3) C.(﹣3,4) D.(3,4)
4.下列命题中是假命题的是( ).
A.等角的补角相等 B.平行于同一条直线的两条直线平行
C.对顶角相等 D.同位角相等
5.如图,直线,被直线,所截,若,,则的度数是( )
A. B. C. D.
6.若a2=16,=2,则a+b的值为( )
A.12 B.4 C.12或﹣4 D.12或4
7.已知:如图,AB∥EF,CD⊥EF,∠BAC=30°,则∠ACD=( )
A.100° B.110° C.120° D.130°
8.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0)、(2,0)、(2,1)、(3,2)、(3,1)、(3,0)、(4,0),……,根据这个规律探索可得,第20个点的坐标为( )
A.(6,4) B.(6,5) C.(7,3) D.(7,5)
九、填空题
9.9的算术平方根是 .
十、填空题
10.点关于轴的对称点的坐标为,则的值是______.
十一、填空题
11.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为_____.
十二、填空题
12.如图将一张长方形纸片沿EF折叠后,点A、B分别落在A′、B′的位置,如果∠2=70°,则∠1的度数是___________.
十三、填空题
13.如图,在四边形ABCD纸片中,AD∥BC,AB∥CD.将纸片折叠,点A、B分别落在G、H处,EF为折痕,FH交CD于点K.若∠CKF=35°,则∠A+∠GED=______°.
十四、填空题
14.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=.
例如:(-3)☆2= = 2.
从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a,b(a≠b)的值,并计算a☆b,那么所有运算结果中的最大值是_____.
十五、填空题
15.已知,,,,则________.
十六、填空题
16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…顶点依次用A1,A2,A3,A4…表示,则顶点A2021的坐标是________.
十七、解答题
17.计算:
(1)
(2)
(3)
(4)
十八、解答题
18.求下列各式中的x.
(1)x2-81=0
(2)(x﹣1)3=8
十九、解答题
19.阅读下列推理过程,在括号中填写理由.
已知:如图,点、分别是线段、上的点,平分,,,交于点.
求证:平分.
证明:平分(已知)
( )
(已知)
( )
( )
(等量代换)
( )
( )
( )
( )
平分( )
二十、解答题
20.在平面直角坐标系中,已知O,A,B,C四点的坐标分别为O(0,0),A(0,3),B(-3,3),C(-3,0).
(1)在平面直角坐标系中,描出O,A,B,C四点;
(2)依次连接OA,AB,BC,CO后,得到图形的形状是___________.
二十一、解答题
21.阅读下面的文字,解答问题:是一个无理数,而无理数是无限不循环小数,因此的小数部分无法全部写出来,但是我们可以想办法把它表示出来.因为即,所以的整数部分为,将减去其整数部分后,得到的差就是小数部分,于是的小数部分为
(1)求出的整数部分和小数部分;
(2)求出的整数部分和小数部分;
(3)如果的整数部分是,小数部分是,求出的值.
二十二、解答题
22.小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片.
(1)请帮小丽设计一种可行的裁剪方案;
(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.
二十三、解答题
23.如图1,已知直线CD∥EF,点A,B分别在直线CD与EF上.P为两平行线间一点.
(1)若∠DAP=40°,∠FBP=70°,则∠APB=
(2)猜想∠DAP,∠FBP,∠APB之间有什么关系?并说明理由;
(3)利用(2)的结论解答:
①如图2,AP1,BP1分别平分∠DAP,∠FBP,请你写出∠P与∠P1的数量关系,并说明理由;
②如图3,AP2,BP2分别平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代数式表示)
二十四、解答题
24.[感知]如图①,,求的度数.
小乐想到了以下方法,请帮忙完成推理过程.
解:(1)如图①,过点P作.
∴(_____________),
∴,
∴________(平行于同一条直线的两直线平行),
∴_____________(两直线平行,同旁内角互补),
∴,
∴,
∴,即.
[探究]如图②,,求的度数;
[应用](1)如图③,在[探究]的条件下,的平分线和的平分线交于点G,则的度数是_________º.
(2)已知直线,点A,B在直线a上,点C,D在直线b上(点C在点D的左侧),连接,若平分平分,且所在的直线交于点E.设,请直接写出的度数(用含的式子表示).
二十五、解答题
25.(1)如图1,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ADC=50°,∠ABC=40°,求∠AEC的度数;
(2)如图2,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=α°,∠ABC=β°,求∠AEC的度数;
(3)如图3,PQ⊥MN于点O,点A是平面内一点,AB、AC交MN于B、C两点,AD平分∠BAC交PQ于点D,请问的值是否发生变化?若不变,求出其值;若改变,请说明理由.
【参考答案】
一、选择题
1.A
解析:A
【分析】
根据同位角的定义判断即可.
【详解】
解:∠1和∠2是同位角,
故选:A.
【点睛】
本题考查了同位角、内错角、同旁内角及对顶角的定义,能熟记同位角、内错角、同旁内角及对顶角的定义的内容是解此题的关键,注意数形结合.
2.B
【分析】
根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解.
【详解】
解:A、可以由一个“基本图案”旋转得到,故本选项错误;
B、可以由一个“基本图案”平移得到,故把本选项正
解析:B
【分析】
根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解.
【详解】
解:A、可以由一个“基本图案”旋转得到,故本选项错误;
B、可以由一个“基本图案”平移得到,故把本选项正确;
C、是轴对称图形,不是基本图案的组合图形,故本选项错误;
D、是轴对称图形,不是基本图案的组合图形,故本选项错误.
故选:B.
【点睛】
本题考查了生活中的平移现象,仔细观察各选项图形是解题的关键.
3.A
【分析】
根据点的坐标的几何意义及点在第四象限内的坐标符号的特点解答即可.
【详解】
点P在x轴的下方,y轴的右方,
点P在第四象限,
又点P到x轴、y轴的距离分别是3和4,
点P的横坐标是4,纵坐标是-3,
即点P的坐标为,
故选:A.
【点睛】
本题主要考查了点在在第四象限内的坐标符号,以及横坐标的绝对值解释到y轴的距离,纵坐标的绝对值就是到x轴的距离.
4.D
【分析】
根据等角的补角,平行线的性质,对顶角的性质,进行判断.
【详解】
A. 等角的补角相等,是真命题,不符合题意;
B. 平行于同一条直线的两条直线平行,是真命题,不符合题意;
C. 对顶角相等,是真命题,不符合题意;
D. 两直线平行,同位角相等,原命题是假命题,符合题意;
故选D.
【点睛】
本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质及补角的定义等知识.
5.C
【分析】
首先证明a∥b,推出∠4=∠5,求出∠5即可.
【详解】
解:∵∠1=∠2,
∴a∥b,
∴∠4=∠5,
∵∠5=180°﹣∠3=55°,
∴∠4=55°,
故选:C.
【点睛】
本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
6.D
【分析】
根据平方根和立方根的意义求出a、b即可.
【详解】
解:∵a2=16,
∴a=±4,
∵=2,
∴b=8,
∴a+b=4+8或﹣4+8,
即a+b=12或4.
故选:D.
【点睛】
本题考查了平方根和立方根以及有理数加法,解题关键是明确平方根和立方根的意义,准确求出a、b的值,注意:一个正数的平方根有两个.
7.C
【分析】
如图,过点C作,利用平行线的性质得到,,则易求∠ACD的度数.
【详解】
解:过点C作,则,
,
,
,
,
,
故选:C.
【点睛】
本题考查了平行线的性质.该题通过作辅助线,将转化为(+90°)来求.
8.A
【分析】
横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数.
【详
解析:A
【分析】
横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数.
【详解】
解:把第一个点作为第一列,和作为第二列,
依此类推,则第一列有一个数,第二列有2个数,
第列有个数.则列共有个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上.
因为,则第20个数一定在第6列,由下到上是第4个数.
因而第20个点的坐标是.
故选:A.
【点睛】
本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是一道比较容易出错的题目.
九、填空题
9.【分析】
根据一个正数的算术平方根就是其正的平方根即可得出.
【详解】
∵,
∴9算术平方根为3.
故答案为3.
【点睛】
本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.
解析:【分析】
根据一个正数的算术平方根就是其正的平方根即可得出.
【详解】
∵,
∴9算术平方根为3.
故答案为3.
【点睛】
本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.
十、填空题
10.4
【分析】
根据横坐标不变,纵坐标相反,确定a,b的值,计算即可.
【详解】
∵点关于轴的对称点的坐标为,
∴a=5,b= -1,
∴a+b= 5-1=4,
故答案为:4.
【点睛】
本题考查了坐
解析:4
【分析】
根据横坐标不变,纵坐标相反,确定a,b的值,计算即可.
【详解】
∵点关于轴的对称点的坐标为,
∴a=5,b= -1,
∴a+b= 5-1=4,
故答案为:4.
【点睛】
本题考查了坐标系中轴对称问题,熟练掌握轴对称的坐标变化特点是解题的关键.
十一、填空题
11.6
【详解】
如图,过点D作DH⊥AC于点H,
又∵AD是△ABC的角平分线,DF⊥AB,垂足为F,
∴DF=DH,∠AFD=∠ADH=∠DHG=90°,
又∵AD=AD,DE=DG,
∴△ADF≌
解析:6
【详解】
如图,过点D作DH⊥AC于点H,
又∵AD是△ABC的角平分线,DF⊥AB,垂足为F,
∴DF=DH,∠AFD=∠ADH=∠DHG=90°,
又∵AD=AD,DE=DG,
∴△ADF≌△ADH,△DEF≌△DGH,
设S△DEF=,则S△AED+=S△ADG-,即38+=50-,解得:=6.
∴△EDF的面积为6.
十二、填空题
12.55°
【分析】
先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案.
【详解】
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠B′FC=∠2=70°,
∴∠1+∠
解析:55°
【分析】
先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案.
【详解】
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠B′FC=∠2=70°,
∴∠1+∠B′FE=180°-∠B′FC=110°,
由折叠知∠1=∠B′FE,
∴∠1=∠B′FE=55°,
故答案为:55°.
【点睛】
本题主要考查折叠的性质和平行线的性质,解题的关键是掌握矩形的对边平行、两直线平行同位角相等性质.
十三、填空题
13.145
【分析】
首先判定四边形ABCD是平行四边形,得到∠A=∠C,AD∥BC,再根据折叠变换的性质和平行线的性质将角度转化求解.
【详解】
解:∵AD∥BC,AB∥CD,
∴四边形ABCD是平行
解析:145
【分析】
首先判定四边形ABCD是平行四边形,得到∠A=∠C,AD∥BC,再根据折叠变换的性质和平行线的性质将角度转化求解.
【详解】
解:∵AD∥BC,AB∥CD,
∴四边形ABCD是平行四边形,
∴∠A=∠C,
根据翻转折叠的性质可知,∠AEF=∠GEF,∠EFB=∠EFK,
∵AD∥BC,
∴∠DEF=∠EFB,∠AEF=∠EFC,
∴∠GEF=∠AEF=∠EFC,∠DEF=∠EFB=∠EFK,
∴∠GEF﹣∠DEF=∠EFC﹣∠EFK,
∴∠GED=∠CFK,
∵∠C+∠CFK+∠CKF=180°,
∴∠C+∠CFK=145°,
∴∠A+∠GED=145°,
故答案为145.
【点睛】
本题主要考查平行线的性质;多边形内角与外角及翻折变换(折叠问题),熟练掌握平行线的性质;多边形内角与外角及翻折变换(折叠问题)是解题的关键.
十四、填空题
14.8
【解析】
解:当a>b时,a☆b= =a,a最大为8;
当a<b时,a☆b==b,b最大为8,故答案为:8.
点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
解析:8
【解析】
解:当a>b时,a☆b= =a,a最大为8;
当a<b时,a☆b==b,b最大为8,故答案为:8.
点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
十五、填空题
15.11
【分析】
根据三角形的面积等于正方形面积减去三个小三角形面积解答即可.
【详解】
解:如图示,根据,,三点坐标建立坐标系得:
则.
故答案为:11
【点睛】
此题考查利用直角坐标系求三角形的
解析:11
【分析】
根据三角形的面积等于正方形面积减去三个小三角形面积解答即可.
【详解】
解:如图示,根据,,三点坐标建立坐标系得:
则.
故答案为:11
【点睛】
此题考查利用直角坐标系求三角形的面积,关键是根据三角形的面积等于正方形面积减去三个小三角形面积解答.
十六、填空题
16.(-506,-506)
【分析】
根据正方形的性质找出部分An点的坐标,根据坐标的变化找出变化规律“A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A
解析:(-506,-506)
【分析】
根据正方形的性质找出部分An点的坐标,根据坐标的变化找出变化规律“A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数)”,依此即可得出结论.
【详解】
解:观察发现:A1(-1,-1),A2(-1,1),A3(1,1),A4(1,-1),A5(-2,-2),A6(-2,2),A7(2,2),A8(2,-2),A9(-3,-3),…,
∴A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数),
∵2021=505×4+1,
∴A2021(-506,-506),
故答案为:(-506,-506).
【点睛】
本题考查了规律型:点的坐标,解题的关键是找出变化规律“A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数),”解决该题型题目时,根据点的坐标的变化找出变化规律是关键.
十七、解答题
17.(1)6;(2)-4;(3);(4).
【分析】
(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;
(2)利用算术平方根和立方根化简,再进一步计算即可;
(3)类比单项式乘多项式展开计算
解析:(1)6;(2)-4;(3);(4).
【分析】
(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;
(2)利用算术平方根和立方根化简,再进一步计算即可;
(3)类比单项式乘多项式展开计算;
(4)利用绝对值的性质化简,再进一步合并同类二次根式.
【详解】
解:(1)
=3+2+1
=6;
(2)
=2-3-3
=-4;
(3)
= ;
(4)
=
=.
故答案为(1)6;(2)-4;(3);(4).
【点睛】
本题考查立方根和算术平方根,实数的混合运算,先化简,再进一步计算,注意选择合适的方法简算.
十八、解答题
18.(1)x=±9;(2)x=3
【分析】
(1)方程整理后,利用平方根定义开方即可求出解;
(2)利用立方根定义开立方即可求出解.
【详解】
解:(1)方程整理得:x2=81,
开方得:x=±9;
(
解析:(1)x=±9;(2)x=3
【分析】
(1)方程整理后,利用平方根定义开方即可求出解;
(2)利用立方根定义开立方即可求出解.
【详解】
解:(1)方程整理得:x2=81,
开方得:x=±9;
(2)方程整理得:(x-1)3=8,
开立方得:x-1=2,
解得:x=3.
【点睛】
本题考查了平方根、立方根,熟练掌握各自的定义是解本题的关键.
十九、解答题
19.见解析
【分析】
根据平行线的性质,角平分线的定义填写理由即可.
【详解】
证明:平分(已知)
(角平分线的定义)
(已知)
(同位角相等,两直线平行)
(两直线平行,内错角相等)
(等量代换)
(
解析:见解析
【分析】
根据平行线的性质,角平分线的定义填写理由即可.
【详解】
证明:平分(已知)
(角平分线的定义)
(已知)
(同位角相等,两直线平行)
(两直线平行,内错角相等)
(等量代换)
(已知)
(两直线平行,同位角相等)
(两直线平行,内错角相等)
(等量代换)
平分(角平分线的定义)
【点睛】
本题考查了角平分线的定义,平行线的性质与判定,掌握平行线的性质与判定是解题的关键.
二十、解答题
20.(1)见解析;(2)正方形
【分析】
(1)根据平面直角坐标系找出各点的位置即可;
(2)观察图形可知四边形ABCO是正方形.
【详解】
解:(1)如图.
(2)四边形ABCO是正方形.
【点睛】
解析:(1)见解析;(2)正方形
【分析】
(1)根据平面直角坐标系找出各点的位置即可;
(2)观察图形可知四边形ABCO是正方形.
【详解】
解:(1)如图.
(2)四边形ABCO是正方形.
【点睛】
本题考查了坐标与图形性质,能够准确在平面直角坐标系中找出点的位置是解题的关键.
二十一、解答题
21.(1)2,;(2)2,;(3)
【分析】
(1)仿照题例,可直接求出的整数部分和小数部分;
(2)先求出的整数部分,再得到的整数部分,减去其整数部分,即得其小数部分;
(3)根据题例,先确定a、b,
解析:(1)2,;(2)2,;(3)
【分析】
(1)仿照题例,可直接求出的整数部分和小数部分;
(2)先求出的整数部分,再得到的整数部分,减去其整数部分,即得其小数部分;
(3)根据题例,先确定a、b,再计算a-b即可.
【详解】
解:(1)∵,即.
∴的整数部分为2,的小数部分为;
(2)∵ ,即 ,
∴的整数部分为1,
∴的整数部分为2,
∴小数部分为.
(3)∵,即,
∴的整数部分为2,的整数部分为4,即a=4,
所以的小数部分为,
即b=,
∴.
【点睛】
本题考查了无理数的估算,二次根式的加减.看懂题例并熟练运用是解决本题的关键.
二十二、解答题
22.(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.
【解析】
(1)解:设面积为400cm2的正方形纸片的边长为a cm
∴
解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.
【解析】
(1)解:设面积为400cm2的正方形纸片的边长为a cm
∴a2=400
又∵a>0
∴a=20
又∵要裁出的长方形面积为300cm2
∴若以原正方形纸片的边长为长方形的长,
则长方形的宽为:300÷20=15(cm)
∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形
(2)∵长方形纸片的长宽之比为3:2
∴设长方形纸片的长为3xcm,则宽为2xcm
∴6x 2=300
∴x 2=50
又∵x>0
∴x =
∴长方形纸片的长为
又∵>202
即:>20
∴小丽不能用这块纸片裁出符合要求的纸片
二十三、解答题
23.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=.
【分析】
(1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=
解析:(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=.
【分析】
(1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=∠DAP,再根据平行公理求出CD∥EF然后根据两直线平行,内错角相等可得∠MPB=∠FBP,最后根据∠APM+∠MPB=∠DAP+∠FBP等量代换即可得证;
(2)结论:∠APB=∠DAP+∠FBP.
(3)①根据(2)的规律和角平分线定义解答; ②根据①的规律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根据角平分线的定义和平角等于180°列式整理即可得解.
【详解】
(1)证明:过P作PM∥CD,
∴∠APM=∠DAP.(两直线平行,内错角相等),
∵CD∥EF(已知),
∴PM∥CD(平行于同一条直线的两条直线互相平行),
∴∠MPB=∠FBP.(两直线平行,内错角相等),
∴∠APM+∠MPB=∠DAP+∠FBP.(等式性质) 即∠APB=∠DAP+∠FBP=40°+70°=110°.
(2)结论:∠APB=∠DAP+∠FBP.
理由:见(1)中证明.
(3)①结论:∠P=2∠P1;
理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,
∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,
∴∠P=2∠P1.
②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,
∵AP2、BP2分别平分∠CAP、∠EBP,
∴∠CAP2=∠CAP,∠EBP2=∠EBP,
∴∠AP2B=∠CAP+∠EBP,
= (180°-∠DAP)+ (180°-∠FBP),
=180°- (∠DAP+∠FBP),
=180°- ∠APB,
=180°- β.
【点睛】
本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线.
二十四、解答题
24.[感知]见解析;[探究]70°;[应用](1)35;(2)或
【分析】
[感知]过点P作PM∥AB,根据平行线的性质得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果;
解析:[感知]见解析;[探究]70°;[应用](1)35;(2)或
【分析】
[感知]过点P作PM∥AB,根据平行线的性质得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果;
[探究]过点P作PM∥AB,根据AB∥CD,PM∥CD,进而根据平行线的性质即可求∠EPF的度数;
[应用](1)如图③所示,在[探究]的条件下,根据∠PEA的平分线和∠PFC的平分线交于点G,可得∠G的度数;
(2)画出图形,分点A在点B左侧和点A在点B右侧,两种情况,分别求解.
【详解】
解:[感知]如图①,过点P作PM∥AB,
∴∠1=∠AEP=40°(两直线平行,内错角相等)
∵AB∥CD,
∴PM∥CD(平行于同一条直线的两直线平行),
∴∠2+∠PFD=180°(两直线平行,同旁内角互补),
∴∠PFD=130°(已知),
∴∠2=180°-130°=50°,
∴∠1+∠2=40°+50°=90°,即∠EPF=90°;
[探究]如图②,过点P作PM∥AB,
∴∠MPE=∠AEP=50°,
∵AB∥CD,
∴PM∥CD,
∴∠PFC=∠MPF=120°,
∴∠EPF=∠MPF-∠MPE=120°-50°=70°;
[应用](1)如图③所示,
∵EG是∠PEA的平分线,FG是∠PFC的平分线,
∴∠AEG=∠AEP=25°,∠GFC=∠PFC=60°,
过点G作GM∥AB,
∴∠MGE=∠AEG=25°(两直线平行,内错角相等)
∵AB∥CD(已知),
∴GM∥CD(平行于同一条直线的两直线平行),
∴∠GFC=∠MGF=60°(两直线平行,内错角相等).
∴∠G=∠MGF-∠MGE=60°-25°=35°.
故答案为:35.
(2)当点A在点B左侧时,
如图,故点E作EF∥AB,则EF∥CD,
∴∠ABE=∠BEF,∠CDE=∠DEF,
∵平分平分,,
∴∠ABE=∠BEF=,∠CDE=∠DEF=,
∴∠BED=∠BEF+∠DEF=;
当点A在点B右侧时,
如图,故点E作EF∥AB,则EF∥CD,
∴∠DEF=∠CDE,∠ABG=∠BEF,
∵平分平分,,
∴∠DEF=∠CDE=,∠ABG=∠BEF=,
∴∠BED=∠DEF-∠BEF=;
综上:∠BED的度数为或.
【点睛】
本题考查了平行线的判定与性质、平行公理及推论,角平分线的定义,解决本题的关键是熟练运用平行线的性质.
二十五、解答题
25.(1)∠E=45°;(2)∠E=;(3)不变化,
【分析】
(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=∠
解析:(1)∠E=45°;(2)∠E=;(3)不变化,
【分析】
(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,则可得∠E= (∠D+∠B),继而求得答案;
(2)首先延长BC交AD于点F,由三角形外角的性质,可得∠BCD=∠B+∠BAD+∠D,又由角平分线的性质,即可求得答案.
(3)由三角形内角和定理,可得,利用角平分线的性质与三角形的外角的性质可得答案.
【详解】
解:(1)∵CE平分∠BCD,AE平分∠BAD
∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,
∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,
∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB
∴∠D+∠B=2∠E,
∴∠E=(∠D+∠B),
∵∠ADC=50°,∠ABC=40°,
∴∠AEC= ×(50°+40°)=45°;
(2)延长BC交AD于点F,
∵∠BFD=∠B+∠BAD,
∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,
∵CE平分∠BCD,AE平分∠BAD
∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,
∵∠E+∠ECB=∠B+∠EAB,
∴∠E=∠B+∠EAB-∠ECB=∠B+∠BAE-∠BCD
=∠B+∠BAE-(∠B+∠BAD+∠D)
= (∠B-∠D),
∠ADC=α°,∠ABC=β°,
即∠AEC=
(3)的值不发生变化,
理由如下:
如图,记与交于,与交于,
①,
②,
①-②得:
AD平分∠BAC,
【点睛】
此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义.此题难度较大,注意掌握整体思想与数形结合思想的应用.
展开阅读全文