1、2022年人教版中学七7年级下册数学期末综合复习(附解析)一、选择题19的算术平方根为()A9BC3D2下列各组图形可以通过平移互相得到的是()ABCD3在直角坐标系中内点在第三象限,那么点在( )A第一象限B第二象限C第三象限D第四象限4下列命题是假命题的是( )A垂线段最短B内错角相等C在同一平面内,不重合的两条直线只有相交和平行两种位置关系D若两条直线相交所形成的四个角中有三个角相等,则这两条直线互相垂直5直线,则( ) A15B25C35D206小雪在作业本上做了四道题目:3;4;9;-6,她做对了的题目有()A1道B2道C3道D4道7已知:如图,ABEF,CDEF,BAC=30,则A
2、CD=( )A100B110C120D1308如图,过点作直线:的垂线,垂足为点,过点作轴,垂足为点,过点作,垂足为点,这样依次作下去,得到一组线段:,则线段的长为( )ABCD九、填空题9的算术平方根为_十、填空题10若点P(a,b)关于y轴的对称点是P1 ,而点P1关于x轴的对称点是P ,若点P的坐标为(-3,4),则a=_,b=_十一、填空题11如图,ADBC,ABC的角平分线BP与BAD的角平分线AP相交于点P,作PEAB于点E若PE2,则两平行线AD与BC间的距离为_十二、填空题12如图,已知ABCD,如果1100,2120,那么3_度十三、填空题13如图,在中,点D是的中点,点E在
3、上,将沿折叠,若点B的落点在射线上,则与所夹锐角的度数是_十四、填空题14新定义一种运算,其法则为,则_十五、填空题15如图,直线经过原点,点在轴上,于若A(4,0),B(m,3),C(n,-5),则_十六、填空题16育红中学八五班的数学社团在做如下的探究活动:在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向上、向右、向下、向右的方向依次移动,每次移动1个单位长度,其移动路线如图所示,第1次移动到点A1,第2次移动到点A2第n次移动到点An,则OA2A2021的面积是 _十七、解答题17计算下列各式的值:(1)|2| + (1)2021;(2)十八、解答题18求下列各式中的x
4、值:(1)(x1)24;(2)(2x+1)3+640;(3)x33十九、解答题19如图,已知1+AFE=180,A=2,求证:A=C+AFC 证明: 1+AFE=180 CDEF( , )A=2 ( ) ( , ) ABCDEF( , ) A= ,C= ,( , ) AFE =EFC+AFC , = 二十、解答题20在平面直角坐标系中,为坐标原点,点的坐标为,点坐标为,且满足(1)若没有平方根,且点到轴的距离是点到轴距离的倍,求点的坐标;(2)点的坐标为,的面积是的倍,求点的坐标二十一、解答题21已知:是的小数部分,是的小数部分(1)求的值;(2)求的平方根二十二、解答题22教材中的探究:如图
5、,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1)(1)阅读理解:图1中大正方形的边长为_,图2中点A表示的数为_; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图利用中的成果,在图4的数轴上分别标出表示数0.5以及 的点,并比较它们的大小二十三、解答题23点A,C,E在直线l上,点B不在直线l上,把线段AB沿直线l向右平移得到线段CD(1)如图1,若点E在线段AC上,求证:
6、B+D=BED;(2)若点E不在线段AC上,试猜想并证明B,D,BED之间的等量关系;(3)在(1)的条件下,如图2所示,过点B作PB/ED,在直线BP,ED之间有点M,使得ABE=EBM,CDE=EDM,同时点F使得ABE=nEBF,CDE=nEDF,其中n1,设BMD=m,利用(1)中的结论求BFD的度数(用含m,n的代数式表示)二十四、解答题24问题情境:如图1,ABCD,PAB=130,PCD=120,求APC的度数小明的思路是:如图2,过P作PEAB,通过平行线性质来求APC(1)按小明的思路,易求得APC的度数为 度;(2)如图3,ADBC,点P在射线OM上运动,当点P在A、B两点
7、之间运动时,ADP=,BCP=试判断CPD、之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出CPD、间的数量关系二十五、解答题25如图,ABC和ADE有公共顶点A,ACBAED90,BAC=45,DAE=30(1)若DE/AB,则EAC ;(2)如图1,过AC上一点O作OGAC,分别交AB、AD、AE于点G、H、F若AO2,SAGH4,SAHF1,求线段OF的长;如图2,AFO的平分线和AOF的平分线交于点M,FHD的平分线和OGB的平分线交于点N,N+M的度数是否发生变化?若不变,求出其度数;若改变,请说明理由
8、【参考答案】一、选择题1C解析:C【分析】根据算术平方根的定义即可得【详解】解:,的算术平方根为3,故选:C【点睛】本题考查了算术平方根,熟记定义是解题关键2B【分析】根据平移的定义逐项分析判断即可【详解】解:A、不能通过平移得到,故本选项错误;B、能通过平移得到,故本选项正确;C、不能通过平移得到,故本选项错误;D、不能通过平移得到,故解析:B【分析】根据平移的定义逐项分析判断即可【详解】解:A、不能通过平移得到,故本选项错误;B、能通过平移得到,故本选项正确;C、不能通过平移得到,故本选项错误;D、不能通过平移得到,故本选项错误故选:B【点睛】本题考查了图形的平移,正确掌握平移的定义和性质
9、是解题关键3D【分析】根据第三象限内点的坐标符号判断出a、b,再根据各象限内点的坐标特征解答【详解】解:点M(a,b)在第三象限,a0,b0,-a0,那么点N(-a,b)所在的象限是:第四象限故选:D【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4B【分析】根据点到直线的距离、平行线的判定定理及平行线和相交线的基本性质等进行判断即可得出答案【详解】A、垂线段最短,正确,是真命题,不符合题意;B、内错角相等,错误,是假命题,必须加前提条件(两直线平行,内
10、错角相等),符合题意;C、在同一平面内,不重合的两条直线只有相交和平行两种位置关系,正确,是真命题,不符合题意;D、若两条直线相交所形成的四个角中有三个角相等,则这两条直线互相垂直,正确,相交所成的四个角中,形成两组对顶角,有三个角相等,则四个角一定全相等,都是,所以互相垂直,不符合题意;故选:B【点睛】题目主要考察真假命题与定理的联系,解题关键是准确掌握各个定理5A【分析】分别过A、B作直线的平行线AD、BC,根据平行线的性质即可完成【详解】分别过A、B作直线AD、BC,如图所示,则ADBCBCCBF=2ADEAD=1=15DAB=EAB-EAD=125-15=110ADBCDAB+ABC=
11、180ABC=180-DAB=180-110=70 CBF=ABF-ABC=85-70=152=15故选:A【点睛】本题考查了平行线的性质与判定等知识,关键是作两条平行线6A【分析】依据立方根、平方根算术平方根的定义求解即可【详解】=-3,故正确;=4,故错误;=3,故错误;=6,故错误故选:A.【点睛】此题考查立方根,算术平方根和平方根,掌握运算法则是解题关键7C【分析】如图,过点C作,利用平行线的性质得到,则易求ACD的度数【详解】解:过点C作,则,故选:C【点睛】本题考查了平行线的性质该题通过作辅助线,将转化为(90)来求8B【分析】由,可得,然后根据形的性质結合图形即可得到规律,然后按
12、规律解答即可.【详解】解:由,可得点A0坐标为(2,0)OA0=2,A2020A2021=故答案为:解析:B【分析】由,可得,然后根据形的性质結合图形即可得到规律,然后按规律解答即可.【详解】解:由,可得点A0坐标为(2,0)OA0=2,A2020A2021=故答案为:B【点睛】本题考查了规律型中点的坐标以及含30角的直角三角形,利用“在直角三角形中,30角所对的直角边等于斜边的一半”,结合图形找出变化规律是解题的关键九、填空题94【分析】先利用平方的意义求出值,再利用算术平方根的概念求解即可.【详解】=16,16的算术平方根是4故答案为4.【点睛】本题考查算术平方根的定义,难度低,属于基础题
13、,注意算术平方根与解析:4【分析】先利用平方的意义求出值,再利用算术平方根的概念求解即可.【详解】=16,16的算术平方根是4故答案为4.【点睛】本题考查算术平方根的定义,难度低,属于基础题,注意算术平方根与平方根的区别.十、填空题10a=3 b=-4 【分析】先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值【详解】由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-解析:a=3 b=-4 【分析】先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值【详解】由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-3
14、,-4),点P(a,b)关于y轴对称的点是P1,则P点的坐标为(3,-4),则a=3,b=-4.【点睛】此题考查关于x轴、y轴对称的点的坐标,难度不大十一、填空题114【分析】根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案【详解】解:过点P作MNAD,ADBC,ABC的角平分线BP与BAD的角平分线A解析:4【分析】根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案【详解】解:过点P作MNAD,ADBC,ABC的角平分线BP与BAD的角平分线AP相交于点P,PEAB于点E,APBP,PNBC,PM=PE=2,PE=PN
15、=2,MN=2+2=4故答案为4十二、填空题1240【分析】过作平行于,由与平行,得到与平行,利用两直线平行同位角相等,同旁内角互补,得到,即可确定出的度数【详解】解:如图:过作平行于,即,故答案为:40【解析:40【分析】过作平行于,由与平行,得到与平行,利用两直线平行同位角相等,同旁内角互补,得到,即可确定出的度数【详解】解:如图:过作平行于,即,故答案为:40【点睛】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键十三、填空题13【分析】根据折叠可得三角形全等,根据全等三角形的性质以及中点的性质可得, ,由等腰三角形性质以及三角形外角定理求得度数,在中根据内角和即可求得与所夹锐
16、角的度数【详解】如下图,连接DE,与解析:【分析】根据折叠可得三角形全等,根据全等三角形的性质以及中点的性质可得, ,由等腰三角形性质以及三角形外角定理求得度数,在中根据内角和即可求得与所夹锐角的度数【详解】如下图,连接DE,与相交于点O,将 BDE 沿 DE 折叠,,又D为BC的中点,,即与所夹锐角的度数是故答案为:【点睛】本题考察了轴对称的性质、全等三角形的性质、中点的性质、三角形的外角以及内角和定理,综合运用以上性质定理是解题的关键十四、填空题14【分析】按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得【详解】故答案为:【点睛】本题考查定义新运算,解题关键是根据题干定义
17、的运算规则,转化为我们熟知的形式进行求解解析:【分析】按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得【详解】故答案为:【点睛】本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解十五、填空题15【分析】作三角形的高线,根据坐标求出BE、OA、OF的长,利用面积法可以得出BCAD=32【详解】解:过B作BEx轴于E,过C作CFy轴于F,B(m,3),BE=3,A解析:【分析】作三角形的高线,根据坐标求出BE、OA、OF的长,利用面积法可以得出BCAD=32【详解】解:过B作BEx轴于E,过C作CFy轴于F,B(m,3),BE=3,A(4,0),A
18、O=4,C(n,-5),OF=5,SAOB=AOBE=43=6,SAOC=AOOF=45=10,SAOB+SAOC=6+10=16,SABC=SAOB+SAOC,BCAD=16,BCAD=32,故答案为:32【点睛】本题考查了坐标与图形性质,根据点的坐标表示出对应线段的长,面积法在几何问题中经常运用,要熟练掌握;本题根据面积法求出线段的积十六、填空题16【分析】由题意知OA4n2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题【详解】解:由题意知OA4n2n(n为正整数),图形运动4次一个循环解析:【分析】由题意知OA4n2n,图形运动4次一个循环,横
19、坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题【详解】解:由题意知OA4n2n(n为正整数),图形运动4次一个循环,横坐标对应一个循环增加2202145051,A2021与A1是对应点,A2020与A0是对应点OA202050521010,A1A20211010A2A20211010-1=1009则OA2A2019的面积是11009,故答案为:【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得十七、解答题17(1)3;(2)2【分析】(1)根据绝对值、立方根、乘方解决此题(2)先用乘法分配律去括号,从而简化运算再根据
20、算术平方根解决本题【详解】解:(1)原式,3.(2)原式,解析:(1)3;(2)2【分析】(1)根据绝对值、立方根、乘方解决此题(2)先用乘法分配律去括号,从而简化运算再根据算术平方根解决本题【详解】解:(1)原式,3.(2)原式,316,2.【点睛】本地主要考查绝对值、立方根、算术平方根以及乘方,熟练掌握绝对值、立方根、算术平方根以及乘方是解决本题的关键十八、解答题18(1)x3或x1;(2)x2.5;(3)x1.5【分析】(1)直接开平方进行解答;(2)先移项,再开立方进行解答(3)先移项,系数化为1,再开平方法进行解答【详解】解:(解析:(1)x3或x1;(2)x2.5;(3)x1.5【
21、分析】(1)直接开平方进行解答;(2)先移项,再开立方进行解答(3)先移项,系数化为1,再开平方法进行解答【详解】解:(1)开方得:x12或x12,解得:x3或x1;(2)方程整理得:(2x+1)364,开立方得:2x+14,解得:x2.5;(3)方程整理得:x3,开立方得:x1.5【点睛】本题考查了平方根和立方根的概念注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0十九、解答题19同旁内角互补两直线平行;ABCD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;AFE
22、,EFC;两直线平行,内错角相等;A,C+AFC 【分析】根据同旁解析:同旁内角互补两直线平行;ABCD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;AFE,EFC;两直线平行,内错角相等;A,C+AFC 【分析】根据同旁内角互补,两直线平行可得 CDEF,根据A=2利用同位角相等,两直线平行,ABCD,根据平行同一直线的两条直线平行可得ABCDEF根据平行线的性质可得A=AFE ,C=EFC,根据角的和可得 AFE =EFC+AFC 即可【详解】证明: 1+AFE=180 CDEF(同旁内角互补,两直线平行),A=2 ,( ABCD ) (同位角相等,两直线平行
23、), ABCDEF(两条直线都与第三条直线平行,则这两直线也互相平行) A= AFE ,C= EFC,(两直线平行,内错角相等) AFE =EFC+AFC , A = C+AFC 故答案为同旁内角互补两直线平行;ABCD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;AFE,EFC;两直线平行,内错角相等;A,C+AFC 【点睛】本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键二十、解答题20(1)(-2,6);(2)(,)或(8,-4)【分析】(1)根据平方根的意义得到a0,再利用点B到x轴的距离是点A到x轴距离的3倍得到方程,解之得到a值,
24、可写出B点坐标;(2)利用A(a,-解析:(1)(-2,6);(2)(,)或(8,-4)【分析】(1)根据平方根的意义得到a0,再利用点B到x轴的距离是点A到x轴距离的3倍得到方程,解之得到a值,可写出B点坐标;(2)利用A(a,-a)和B(a,4-a)得到AB=4,AB与y轴平行,由于点D的坐标为(4,-2),OAB的面积是DAB面积的2倍,则判断点A、点B在y轴的右侧,即a0,根据三角形面积公式得到,解方程得到a值,然后写出B点坐标【详解】解:(1)a没有平方根,a0,-a0,点B到x轴的距离是点A到x轴距离的3倍,a+b=4,解得:a=-2或a=1(舍),b=6,此时点B的坐标为(-2,
25、6);(2)点A的坐标为(a,-a),点B坐标为(a,4-a),AB=4,AB与y轴平行,点D的坐标为(4,-2),OAB的面积是DAB面积的2倍,点A、点B在y轴的右侧,即a0,解得:a=或a=8,B点坐标为(,)或(8,-4)【点睛】本题考查了坐标与图形性质:利用点的坐标计算线段的长和判断线段与坐标轴的位置关系也考查了三角形的面积公式和平方根的性质二十一、解答题21(1),;(2)3【分析】(1)首先得出12,进而得出a,b的值;(2)根据平方根即可解答【详解】(1)121011,78的整数部分为10,的整数部分为7,解析:(1),;(2)3【分析】(1)首先得出12,进而得出a,b的值;
26、(2)根据平方根即可解答【详解】(1)121011,78的整数部分为10,的整数部分为7,;(2)原式的平方根为:【点睛】此题主要考查了估算无理数的大小,正确得出a,b的值是解题关键二十二、解答题22(1);(2)见解析;见解析, 【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2) 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;解析:(1);(2)见解析;见解析, 【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2) 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;由题(1)的原理得出大正方形的边长
27、为,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,再把N点表示出来,即可比较它们的大小【详解】解:设正方形边长为a,a2=2,a=,故答案为:,;(2)解:裁剪后拼得的大正方形如图所示: 设拼成的大正方形的边长为b,b2=5,b=,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,则M表示的数为-3+,看图可知,表示-0.5的N点在M点的右方,比较大小:【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键二十三、解答题23(1)见解析;(2)当点E在CA的延长线上时,BED=D
28、-B;当点E在AC的延长线上时,BED=BET-DET=B-D;(3)【分析】(1)如图1中,过点E作ETAB利用平行解析:(1)见解析;(2)当点E在CA的延长线上时,BED=D-B;当点E在AC的延长线上时,BED=BET-DET=B-D;(3)【分析】(1)如图1中,过点E作ETAB利用平行线的性质解决问题(2)分两种情形:如图2-1中,当点E在CA的延长线上时,如图2-2中,当点E在AC的延长线上时,构造平行线,利用平行线的性质求解即可(3)利用(1)中结论,可得BMD=ABM+CDM,BFD=ABF+CDF,由此解决问题即可【详解】解:(1)证明:如图1中,过点E作ETAB由平移可得
29、ABCD,ABET,ABCD,ETCDAB,B=BET,TED=D,BED=BET+DET=B+D(2)如图2-1中,当点E在CA的延长线上时,过点E作ETABABET,ABCD,ETCDAB,B=BET,TED=D,BED=DET-BET=D-B如图2-2中,当点E在AC的延长线上时,过点E作ETABABET,ABCD,ETCDAB,B=BET,TED=D,BED=BET-DET=B-D(3)如图,设ABE=EBM=x,CDE=EDM=y,ABCD,BMD=ABM+CDM,m=2x+2y,x+y=m,BFD=ABF+CDF,ABE=nEBF,CDE=nEDF,BFD=【点睛】本题属于几何变换
30、综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型二十四、解答题24(1)110;(2)CPD=+,见解析;(3)当P在BA延长线时,CPD=-;当P在AB延长线上时,CPD=-【分析】(1)过P作PEAB,通过平行线性质求A解析:(1)110;(2)CPD=+,见解析;(3)当P在BA延长线时,CPD=-;当P在AB延长线上时,CPD=-【分析】(1)过P作PEAB,通过平行线性质求APC即可;(2)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=CPE,即可得出答案;(3)画出图形,根据平行线的
31、性质得出=DPE,=CPE,即可得出答案【详解】解:(1)过点P作PEAB,ABCD,PEABCD,A+APE=180,C+CPE=180,PAB=130,PCD=120,APE=50,CPE=60,APC=APE+CPE=110故答案为110;(2)CPD=+,理由是:如图3,过P作PEAD交CD于E,ADBC,ADPEBC,=DPE,=CPE,CPD=DPE+CPE=+;(3)当P在BA延长线时,CPD=-,理由是:如图4,过P作PEAD交CD于E,ADBC,ADPEBC,=DPE,=CPE,CPD=CPE-DPE =-;当P在AB延长线时,CPD=-,理由是:如图5,过P作PEAD交CD
32、于E,ADBC,ADPEBC,=DPE,=CPE,CPD=DPE -CPE =-【点睛】本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,分类讨论是解题的关键二十五、解答题25(1)45;(2)1;是定值,M+N=142.5【分析】(1)利用平行线的性质求解即可(2)利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论利用角平分线的定解析:(1)45;(2)1;是定值,M+N=142.5【分析】(1)利用平行线的性质求解即可(2)利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论利用角平分线的定义求出M,N(用FAO表示),可得结论【详
33、解】解:(1)如图,ABEDE=EAB=90(两直线平行,内错角相等),BAC=45,CAE=90-45=45故答案为:45(2)如图1中,OGAC,AOG=90,OAG=45,OAG=OGA=45,AO=OG=2,SAHG=GHAO=4,SAHF=FHAO=1,GH=4,FH=1,OF=GH-HF-OG=4-1-2=1结论:N+M=142.5,度数不变理由:如图2中,MF,MO分别平分AFO,AOF,M=180-(AFO+AOF)=180-(180-FAO)=90+FAO,NH,NG分别平分DHG,BGH,N=180-(DHG+BGH)=180-(HAG+AGH+HAG+AHG)=180-(180+HAG)=90-HAG=90-(30+FAO+45)=52.5-FAO,M+N=142.5【点睛】本题考查平行线的性质,角平分线的定义,三角形内角和定理,三角形外角的性质等知识,最后一个问题的解题关键是用FAO表示出M,N