1、2022年人教版中学七7年级下册数学期末试卷含解析一、选择题1如图,与是同位角的是( )ABCD2下列四幅图案中,通过平移能得到图案E的是( )AABBCCDD3已知 A(1,2)为平面直角坐标系中一点,下列说法正确的是( )A点在第一象限B点的横坐标是C点到轴的距离是D以上都不对4下列命题中,假命题是( )A如果两条直线都与第三条直线平行,那么这两条直线也互相平行B在同一平面内,过一点有且只有一条直线与已知直线垂直C两条直线被第三条直线所截,同旁内角互补D两点的所有连线中,线段最短5一副直角三角尺叠放如图1所示,现将45的三角尺固定不动,将含30的三角尺绕顶点A顺时针转动,使两块三角尺至少有
2、一组边互相平行,如图2,当时,则()其它所有可能符合条件的度数为( )A60和135B60和105C105和45D以上都有可能6下列说法中,正确的是()A(2)3的立方根是2B0.4的算术平方根是0.2C的立方根是4D16的平方根是47如图,已知,平分,则的度数是( )ABCD8如图,在平面直角坐标系中,点A1,A2,A3,A4,A5,A6的坐标依次为A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),按此规律排列,则点A2021的坐标是()A B C D 九、填空题9若,则的值为十、填空题10将点先关于x轴对称,再关于y轴对称的点的坐标为_十一、填
3、空题11如图,AD是ABC的角平分线,DFAB,垂足为F,DE=DG,ADG和AED的面积分别为50和38,则EDF的面积为_十二、填空题12如图,BC,AD,有下列结论:ABCD;AEDF;AEBC;AMCBND其中正确的有_(只填序号)十三、填空题13如图,沿折痕折叠长方形,使C,D分别落在同一平面内的,处,若,则的大小是_十四、填空题14现定义一种新运算:对任意有理数a、b,都有ab=a2b,例如32=322=7,2(1)=_十五、填空题15,则在第_象限十六、填空题16如图,每一个小正方形的边长为1个单位长,一只蚂蚁从格点A出发,沿着ABCDAB.路径循环爬行,当爬行路径长为2020个
4、单位长时,蚂蚁所在格点坐标为_十七、解答题17计算(1);(2)十八、解答题18求下列各式中的x:(1)x2=0(2)(x1)3=64十九、解答题19如图,已知1+AFE=180,A=2,求证:A=C+AFC 证明: 1+AFE=180 CDEF( , )A=2 ( ) ( , ) ABCDEF( , ) A= ,C= ,( , ) AFE =EFC+AFC , = 二十、解答题20如图,的顶点坐标分别为:,将平移得到,使点的对应点为(1)可以看作是由先向左平移 个单位,再向下平移 个单位得到的;(2)在图中作出,并写出点、的对应点、的坐标;(3)求的面积二十一、解答题21数学活动课上,张老师
5、说:“是无理数,无理数就是无限不循环小数,同学们,你能把的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用表示它的小数部分”张老师说:“晶晶同学的说法是正确的,因为的整数部分是,将这个数减去其整数部分,差就是小数部分,”请你解答:已知,其中是一个整数,且,请你求出的值二十二、解答题22如图用两个边长为cm的小正方形纸片拼成一个大的正方形纸片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长方形纸片长宽之比为,且面积为cm2?请说明理由二十三、解答题23如图,已知直线,点在直线上,点在直线上,点在点的右侧,平分平分,直线交于点(1
6、)若时,则_;(2)试求出的度数(用含的代数式表示);(3)将线段向右平行移动,其他条件不变,请画出相应图形,并直接写出的度数(用含的代数式表示)二十四、解答题24长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况,如图,灯A射线自顺时针旋转至便立即回转,灯B射线自顺时针旋转至便立即回转,两灯不停交叉照射巡视,若灯A转动的速度是a/秒,灯B转动的速度是b/秒,且a、b满足假定这一带长江两岸河堤是平行的,即,且(1)求a、b的值;(2)若灯B射线先转动45秒,灯A射线才开始转动,当灯B射线第一次到达时运动停止,问A灯转动几秒,两灯的光束互相平行?(3)
7、如图,两灯同时转动,在灯A射线到达之前若射出的光束交于点C,过C作交于点D,则在转动过程中,与的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围二十五、解答题25阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120,40,20,这个三角形就是一个“梦想三角形”反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍(1)如果一个“梦想三角形”有一个角为108,那么这个“梦想三角形”的最小内角的度数为_(2)如图1,
8、已知MON60,在射线OM上取一点A,过点A作ABOM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O、B重合),若ACB=80判定AOB、AOC是否是“梦想三角形”,为什么?(3)如图2,点D在ABC的边上,连接DC,作ADC的平分线交AC于点E,在DC上取一点F,使得EFC+BDC180,DEFB若BCD是“梦想三角形”,求B的度数【参考答案】一、选择题1C解析:C【分析】根据同位角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角即可求解【详解】解:观察图形可知,与1是同位角的是4故选:C【点睛】本
9、题考查了同位角、内错角、同旁内角,三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形2B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件解析:B【分析】根据平移的特征分析各图特点,只要符合“图形的形
10、状、大小和方向都不改变”即为答案【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件的原图是B;A,D选项改变了方向,故错误,C选项中,三角形和四边形位置不对,故C错误故选:B【点睛】在平面内,把一个图形整体沿某一个方向移动,这种图形的平行移动,叫做平移变换,简称平移平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等确定一个图形平移的方向和距离,只需确定其中一个点平移的方向和距离3C【分析】根据点的坐标性质以及在坐标轴上点的性质分别判断得出即可【详解】解:A、10,点在第二象限,原说法错误,该选项不符合题意;B、点的横坐
11、标是1,原说法错误,该选项不符合题意;C、点到y轴的距离是1,该选项正确,符合题意;D、以上都不对,说法错误,该选项不符合题意;故选:C【点睛】本题主要考查了点的坐标,根据坐标平面内点的性质得出是解题关键4C【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案【详解】A.如果两条直线都与第三条直线平行,那么这两条直线也互相平行,选项A是真命题,故不符合题意;B.在同一平面内,过一点有且只有一条直线与已知直线垂直,选项B是真命题,故不符合题意;C.两条直线被第三条直线所截,同旁内角不一定互补,选项C是假命题,故符合题意;D. 两点的所有连线中,线段最短,选项D是真命
12、题,故不符合题意故选:C【点睛】本题主要考查了命题的真假判断,属于基础题,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理5D【分析】根据题意画出图形,再由平行线的性质定理即可得出结论【详解】解:如图当时,;当时,;当 时,;当时, ,故选:【点睛】本题考查的是平行线的判定与性质,根据题意画出图形,利用平行线的性质及直角三角板的性质求解是解答此题的关键6A【分析】根据立方根的定义及平方根的定义依次判断即可得到答案【详解】解:A(2)3的立方根是2,故本选项符合题意;B.0.04的算术平方根是0.2,故本选项不符合题意;C. 的立方根是2,故本选项不符合题意;
13、D.16的平方根是4,故本选项不符合题意;故选:A【点睛】此题考查立方根的定义及平方根的定义,熟记定义是解题的关键7B【分析】利用平行线的性质,角平分线的定义即可解决问题【详解】解:,平分,故选:B【点睛】本题考查平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型8A【分析】根据图象可得移动4次图象完成一个循环,找规律得出的坐标,再确定的坐标,从而可得出点A2021的坐标【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5解析:A【分析】根据图象可得移动4次图象完成一个循环,找规律得出的坐标,再确定的坐标,从而可得出点A2021的坐标【详解】解:A1
14、(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),的横坐标为2,纵坐标为0,的横坐标为,纵坐标为0,以此类推,的横坐标为,纵坐标为0,的坐标为,的坐标为故选:A【点睛】本题考查了点的坐标变化规律,解答本题的关键是仔细观察图形,得到点的坐标变化规律九、填空题9【解析】解:有题意得,则解析:【解析】解:有题意得,则十、填空题10(1,-4)【分析】直角坐标系中,关于x轴对称的两点,横坐标相同,纵坐标互为相反数关于y轴对称的两点,纵坐标相同,横坐标互为相反数,由此即可求解【详解】设关于x轴对称的点为则点的坐标为解析:(1,-4)【分析】直角坐标系中,关于x轴
15、对称的两点,横坐标相同,纵坐标互为相反数关于y轴对称的两点,纵坐标相同,横坐标互为相反数,由此即可求解【详解】设关于x轴对称的点为则点的坐标为(-1,-4)设点和点关于y轴对称则的坐标为(1,-4)故答案为:(1,-4)【点睛】本题考查了关于坐标轴对称的点的坐标特征,关于x轴对称的两点,横坐标相同,纵坐标互为相反数,关于y轴对称的两点,纵坐标相同,横坐标互为相反数十一、填空题116【详解】如图,过点D作DHAC于点H,又AD是ABC的角平分线,DFAB,垂足为F,DF=DH,AFD=ADH=DHG=90,又AD=AD,DE=DG,ADF解析:6【详解】如图,过点D作DHAC于点H,又AD是AB
16、C的角平分线,DFAB,垂足为F,DF=DH,AFD=ADH=DHG=90,又AD=AD,DE=DG,ADFADH,DEFDGH,设SDEF=,则SAED+=SADG-,即38+=50-,解得:=6.EDF的面积为6.十二、填空题12【分析】根据平行线的判定与性质分析判断各项正确与否即可【详解】解:BC,ABCD,AAEC,又AD,AECD,AEDF,AMC解析:【分析】根据平行线的判定与性质分析判断各项正确与否即可【详解】解:BC,ABCD,AAEC,又AD,AECD,AEDF,AMCFNM,又BNDFNM,AMCBND,故正确,由条件不能得出AMC90,故不一定正确;故答案为:【点睛】本题
17、考查了对顶角的性质及平行线的判定与性质,难度一般十三、填空题1370【分析】由题意易图可得,由折叠的性质可得,然后问题可求解【详解】解:由长方形可得:,由折叠可得,;故答案为70【点睛】本题主要考查平行线的性质及折叠的性质,熟解析:70【分析】由题意易图可得,由折叠的性质可得,然后问题可求解【详解】解:由长方形可得:,由折叠可得,;故答案为70【点睛】本题主要考查平行线的性质及折叠的性质,熟练掌握平行线的性质及折叠的性质是解题的关键十四、填空题145【解析】利用题中的新定义可得:2(1)=4(1)=4+1=5.故答案为:5点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键解析:5
18、【解析】利用题中的新定义可得:2(1)=4(1)=4+1=5.故答案为:5点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键十五、填空题15二【分析】根据非负数的性质列方程求出a、b的值,再根据各象限内点的坐标特征解答【详解】解:由题意得,a+2=0,b-6=0,解得a=-2,b=6,所以,点(-2,6)在第二象限;故答解析:二【分析】根据非负数的性质列方程求出a、b的值,再根据各象限内点的坐标特征解答【详解】解:由题意得,a+2=0,b-6=0,解得a=-2,b=6,所以,点(-2,6)在第二象限;故答案为:二【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的
19、符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)十六、填空题16(2,2)【分析】由格点确定点A、B、C的坐标,从而得出AB、BC的长度,从而可找出爬行一圈的长度,再根据2020126164,即可得出当蚂蚁爬了2020个单位时,它所处位置的坐标【详解析:(2,2)【分析】由格点确定点A、B、C的坐标,从而得出AB、BC的长度,从而可找出爬行一圈的长度,再根据2020126164,即可得出当蚂蚁爬了2020个单位时,它所处位置的坐标【详解】解:A点坐标为(2,2),B点坐标为(3,2),C点坐标为(3,1),AB3(2)5
20、,BC2(1)3,从ABCDAB一圈的长度为2(ABBC)162020126164,当蚂蚁爬了2020个单位时,它所处位置在点A右边4个单位长度处,即(2,2)故答案为:(2,2)【点睛】本题考查了规律型中点的坐标以及矩形的性质,根据蚂蚁的运动规律找出蚂蚁每运动16个单位长度是一圈十七、解答题17(1)3;(2)【分析】(1)根据有理数加减混合运算法则求解即可;(2)根据平方根与立方根的定义先化简,然后合并求解即可【详解】解:(1)原式(2)原式【点睛】本题考查有理数解析:(1)3;(2)【分析】(1)根据有理数加减混合运算法则求解即可;(2)根据平方根与立方根的定义先化简,然后合并求解即可【
21、详解】解:(1)原式(2)原式【点睛】本题考查有理数的加减混合运算,以及实数的混合运算等,掌握基本的运算法则,注意运算顺序是解题关键十八、解答题18(1);(2)【分析】(1)用求平方根的方法解方程即可得到答案;(2)用求立方根的方法解方程即可得到答案.【详解】解:(1),;(2),.【点睛】本题主要考查解析:(1);(2)【分析】(1)用求平方根的方法解方程即可得到答案;(2)用求立方根的方法解方程即可得到答案.【详解】解:(1),;(2),.【点睛】本题主要考查了平方根和立方根,解题的关键在于能够熟练掌握平方根和立方根的求解方法.十九、解答题19同旁内角互补两直线平行;ABCD;同位角相等
22、,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;AFE,EFC;两直线平行,内错角相等;A,C+AFC 【分析】根据同旁解析:同旁内角互补两直线平行;ABCD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;AFE,EFC;两直线平行,内错角相等;A,C+AFC 【分析】根据同旁内角互补,两直线平行可得 CDEF,根据A=2利用同位角相等,两直线平行,ABCD,根据平行同一直线的两条直线平行可得ABCDEF根据平行线的性质可得A=AFE ,C=EFC,根据角的和可得 AFE =EFC+AFC 即可【详解】证明: 1+AFE=180 CDEF(同旁内角互
23、补,两直线平行),A=2 ,( ABCD ) (同位角相等,两直线平行), ABCDEF(两条直线都与第三条直线平行,则这两直线也互相平行) A= AFE ,C= EFC,(两直线平行,内错角相等) AFE =EFC+AFC , A = C+AFC 故答案为同旁内角互补两直线平行;ABCD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;AFE,EFC;两直线平行,内错角相等;A,C+AFC 【点睛】本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键二十、解答题20(1)6;6;(2)图见解析,;(3)【分析】(1)根据平移的性质,由对应点的坐标即
24、可得到平移的方式;(2)根据平移的方式,即可画出平移后的图形(3)利用间接求面积的方法,即可求出三角形解析:(1)6;6;(2)图见解析,;(3)【分析】(1)根据平移的性质,由对应点的坐标即可得到平移的方式;(2)根据平移的方式,即可画出平移后的图形(3)利用间接求面积的方法,即可求出三角形的面积【详解】解:(1)平移后对应点为,可以看作是由先向左平移6个单位,再向下平移6个单位得到的故答案为:6;6;(2)作出如图所示点、的对应点、的坐标分别为:,;(3)将三角形补成如图所示的正方形,则其面积为:【点睛】本题考查了平移的性质,解题的关键是掌握平移的性质,正确求出平移的方式,画出平移的图形二
25、十一、解答题2126【分析】先估算出的范围,再求出x,y的值,即可解答【详解】解:,的整数部分是1,小数部分是的整数部分是9,小数部分是,x=9,y=,=39+(-)2019=27+(解析:26【分析】先估算出的范围,再求出x,y的值,即可解答【详解】解:,的整数部分是1,小数部分是的整数部分是9,小数部分是,x=9,y=,=39+(-)2019=27+(-1)2019=27-1=26【点睛】本题考查了估算无理数的大小,解决本题的关键是估算出的范围二十二、解答题22不能截得长宽之比为,且面积为cm2的长方形纸片,见解析【分析】根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长
26、方形的长与宽进行验证即可【详解】解:不能,因为大正方形纸解析:不能截得长宽之比为,且面积为cm2的长方形纸片,见解析【分析】根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可【详解】解:不能,因为大正方形纸片的面积为()2+()2=36(cm2),所以大正方形的边长为6cm,设截出的长方形的长为3b cm,宽为2b cm,则6b2=30,所以b=(取正值),所以3b=3=,所以不能截得长宽之比为3:2,且面积为30cm2的长方形纸片【点睛】本题考查了算术平方根,理解算术平方根的意义是正确解答的关键二十三、解答题23(1)60;(2)n+40;(3)n+
27、40或n-40或220-n【分析】(1)过点E作EFAB,然后根据两直线平行内错角相等,即可求BED的度数;(2)同(1)中方法求解解析:(1)60;(2)n+40;(3)n+40或n-40或220-n【分析】(1)过点E作EFAB,然后根据两直线平行内错角相等,即可求BED的度数;(2)同(1)中方法求解即可;(3)分当点B在点A左侧和当点B在点A右侧,再分三种情况,讨论,分别过点E作EFAB,由角平分线的定义,平行线的性质,以及角的和差计算即可【详解】解:(1)当n=20时,ABC=40,过E作EFAB,则EFCD,BEF=ABE,DEF=CDE,BE平分ABC,DE平分ADC,BEF=A
28、BE=20,DEF=CDE=40,BED=BEF+DEF=60;(2)同(1)可知:BEF=ABE=n,DEF=CDE=40,BED=BEF+DEF=n+40;(3)当点B在点A左侧时,由(2)可知:BED=n+40;当点B在点A右侧时,如图所示,过点E作EFAB,BE平分ABC,DE平分ADC,ABC=2n,ADC=80,ABE=ABC=n,CDG=ADC=40,ABCDEF,BEF=ABE=n,CDG=DEF=40,BED=BEF-DEF=n-40;如图所示,过点E作EFAB,BE平分ABC,DE平分ADC,ABC=2n,ADC=80,ABE=ABC=n,CDG=ADC=40,ABCDEF
29、,BEF=180-ABE=180-n,CDE=DEF=40,BED=BEF+DEF=180-n+40=220-n;如图所示,过点E作EFAB,BE平分ABC,DE平分ADC,ABC=n,ADC=70,ABG=ABC=n,CDE=ADC=40,ABCDEF,BEF=ABG=n,CDE=DEF=40,BED=BEF-DEF=n-40;综上所述,BED的度数为n+40或n-40或220-n【点睛】此题考查了平行线的判定与性质,以及角平分线的定义,正确应用平行线的性质得出各角之间关系是解题关键二十四、解答题24(1),;(2)15秒或63秒;(3)不发生变化,【分析】(1)利用非负数的性质解决问题即可
30、(2)分三种情形,利用平行线的性质构建方程即可解决问题(3)由参数表示,即可判断【详解】解析:(1),;(2)15秒或63秒;(3)不发生变化,【分析】(1)利用非负数的性质解决问题即可(2)分三种情形,利用平行线的性质构建方程即可解决问题(3)由参数表示,即可判断【详解】解:(1),,;(2)设灯转动秒,两灯的光束互相平行,当时,解得;当时,解得;当时,解得,(不合题意)综上所述,当t=15秒或63秒时,两灯的光束互相平行;(3)设灯转动时间为秒,又,而,即【点睛】本题考查平行线的性质和判定,非负数的性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型二十五、解答
31、题25(1)36或18;(2)AOB、AOC都是“梦想三角形”,证明详见解析;(3)B36或B【分析】(1)根据三角形内角和等于180,如果一个“梦想三角形”有一个角为108,解析:(1)36或18;(2)AOB、AOC都是“梦想三角形”,证明详见解析;(3)B36或B【分析】(1)根据三角形内角和等于180,如果一个“梦想三角形”有一个角为108,可得另两个角的和为72,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180108108336,72(13)18,由此比较得出答案即可;(2)根据垂直的定义、三角形内角和定理求出ABO、OAC的度数,根据“梦想三角形”的定义判断即可;
32、(3)根据同角的补角相等得到EFCADC,根据平行线的性质得到DEFADE,推出DEBC,得到CDEBCD,根据角平分线的定义得到ADECDE,求得BBCD,根据“梦想三角形”的定义求解即可【详解】解:当108的角是另一个内角的3倍时,最小角为180108108336,当18010872的角是另一个内角的3倍时,最小角为72(13)18,因此,这个“梦想三角形”的最小内角的度数为36或18故答案为:18或36(2)AOB、AOC都是“梦想三角形” 证明:ABOM,OAB90,ABO90MON30,OAB3ABO,AOB为“梦想三角形”, MON60,ACB80,ACBOACMON,OAC806020,AOB3OAC,AOC是“梦想三角形” (3)解:EFCBDC180,ADCBDC180,EFCADC,ADEF, DEFADE,DEFB,BADE,DEBC, CDEBCD,AE平分ADC,ADECDE,BBCD,BCD是“梦想三角形”,BDC3B,或B3BDC, BDCBCDB180,B36或B【点睛】本题考查的是三角形内角和定理、“梦想三角形”的概念,用分类讨论的思想解决问题是解本题的关键