1、双曲线单元测试题一、选择题:(本大题共10小题,每小题5分,共50分)1已知焦点在x轴上的双曲线的渐近线方程是y4x,则该双曲线的离心率是(A)A.B. C. D.2若双曲线过点(m,n)(mn0),且渐近线方程为yx,则双曲线的焦点(A)A在x轴上 B在y轴上C在x轴或y轴上 D无法判断是否在坐标轴上3双曲线虚轴的一个端点为M,两个焦点为F1、F2,F1MF2120,则双曲线的离心率为(B)A. B. C. D.4已知双曲线9y2m2x21(m0)的一个顶点到它的一条渐近线的距离为,则m等于(D) A1 B2 C3 D45已知双曲线的两个焦点为F1(,0)、F2(,0),M是此双曲线上的一点
2、,且满足则该双曲线的方程是(A)A.y21 Bx21 C.1 D.16设F1,F2是双曲线x21的两个焦点,P是双曲线上的一点,且3|PF1|4|PF2|,则PF1F2的面积等于(C) A4 B8 C24 D487 P是双曲线1(a0,b0)上的点,F1,F2是其焦点,双曲线的离心率是,且0,若F1PF2的面积是9,则ab的值等于(B)A4 B7 C6 D58设F1、F2分别为双曲线1(a0,b0)的左、右焦点若在双曲线右支上存在点P,满足|PF2|F1F2|,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为(C) A3x4y0 B3x5y0 C4x3y0 D5x4y09过
3、双曲线x2y28的左焦点F1有一条弦PQ在左支上,若|PQ|7,F2是双曲线的右焦点,则PF2Q的周长是(C)A28B148 C148 D810我们把离心率为e的双曲线1(a0,b0)称为黄金双曲线给出以下几个说法:双曲线x21是黄金双曲线;若b2ac,则该双曲线是黄金双曲线;若F1B1A290,则该双曲线是黄金双曲线;若MON90,则该双曲线是黄金双曲线其中正确的是(D)A B C D二、填空题:(本大题共5小题,每小题5分,共25分,把正确答案填在题后的横线上)11如图,椭圆,与双曲线,的离心率分别为e1,e2,e3,e4,其大小关系为_ e1e2e40,b0)的左、右焦点分别为F1(c,
4、0)、F2(c,0)若双曲线上存在点P,使,则该双曲线的离心率的取值范围是_(1,1)_ 15以双曲线的实轴为虚轴,虚轴为实轴的双曲线叫做原双曲线的共轭双曲线,若一条双曲线与它的共轭双曲线的离心率分别为e1,e2,则当它们的实、虚轴都在变化时,ee的最小值是_4_三、解答题:(本大题共4小题,共45分)16.(本题满分10分)已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点(4,)点M(3,m)在双曲线上(1)求双曲线方程;(2)求证:0;(3)求F1MF2面积解:(1)e,可设双曲线方程为x2y2.过点(4,),1610,即6.双曲线方程为x2y26.(2)证明:法一:由(
5、1)可知,双曲线中ab,c2,F1(2,0),F2(2,0),kMF1,kMF2, kMF1kMF2.点(3,m)在双曲线上,9m26,m23,故kMF1kMF21,MF1MF2.0.法二:(32,m),(23,m),(32)(32)m23m2,M点在双曲线上,9m26,即m230,0.(3)F1MF2的底|F1F2|4,由(2)知m.F1MF2的高h|m|,SF1MF26.17(本题满分10分)已知曲线C:x21.(1)由曲线C上任一点E向x轴作垂线,垂足为F,动点P满足,求点P的轨迹P的轨迹可能是圆吗?请说明理由; (2)如果直线l的斜率为,且过点M(0,2),直线l交曲线C于A、B两点,
6、又,求曲线C的方程解:(1)设E(x0,y0),P(x,y),则F(x0,0),(xx0,y)3(xx0,yy0)代入x1中,得x21为P点的轨迹方程当时,轨迹是圆(2)由题设知直线l的方程为yx2,设A(x1,y1),B(x2,y2),联立方程组消去y得:(2)x24x40.方程组有两解,20且0,2或0,b0)由已知得:a,c2,再由a2b2c2,b21,双曲线C的方程为y21.(2)设A(xA,yA)、B(xB,yB),将ykx代入y21,得:(13k2)x26kx90.由题意知解得k1.当k1时,l与双曲线左支有两个交点(3)由(2)得:xAxB,yAyB(kxA)(kxB)k(xAxB)2.AB的中点P的坐标为.设直线l0的方程为:yxm,将P点坐标代入直线l0的方程,得m.k1,213k20.m2.m的取值范围为(,2)