1、高一数学必修三试题班次 学号 姓名一、 选择题1. 从学号为050的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,则所选5名学生的学号可能是 ( ) A. 1,2,3,4,5 B. 5,16,27,38,49 C. 2,4,6,8,10 D. 4,13,22,31,402. 给出下列四个命题: “三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件 “当x为某一实数时可使”是不可能事件 “明天顺德要下雨”是必然事件 “从100个灯泡中取出5个,5个都是次品”是随机事件.其中正确命题的个数是 ( )A. 0 B. 1 C.2 D.33. 下列各组事件中,不是
2、互斥事件的是 ( ) A. 一个射手进行一次射击,命中环数大于8与命中环数小于6 B. 统计一个班数学期中考试成绩,平均分数不低于90分与平均分数不高于分 C. 播种菜籽100粒,发芽90粒与发芽80粒 D. 检查某种产品,合格率高于70%与合格率为70%xx动迁户原住户已安装6530未安装40654. 某住宅小区有居民2万户,从中随机抽取200户,调查是否安装xx,调查的结果如表所示,则该小区已安装xx的户数估计有 ( )A. 6500户 B. 300户 C. 19000户 D. 9500户5. 有一个样本容量为50的样本数据分布如下,估计小于30的数据大约占有 ( ) 3; 8; 9; 1
3、1; 10; 6; 3.A. 94% B. 6% C. 88% D. 12%6. 样本的平均数为,样本的平均数为,则样本 的平均数为 ( ) A. B. C. 2 D. 7. 在样本的频率分布直方图中,共有11个小长方形,若中间一个小长立形的面积等于其他10个小长方形的面积的和的,且样本容量为160,则中间一组有频数为 ( )A. 32 B. 0.2 C. 40 D. 0.258. 袋中装有6个白球,5只黄球,4个红球,从中任取1球,抽到的不是白球的概率为 ( )A. B. C. D. 非以上答案9. 在两个袋内,分别写着装有1,2,3,4,5,6六个数字的6张卡片,今从每个袋中各取一张卡片,
4、则两数之和等于9的概率为 ( )A. B. C. D. 10.以中的任意两个元素分别为分子与分母构成分数,则这种分数是可约分数的概率是 ( )A. B. C. D. 二、填空题11.口袋内装有100个大小相同的红球、白球和黑球,其中有45个红球,从中摸出1个球,摸出白球的概率为0.23,则摸出黑球的概率为_.12.在大小相同的6个球中,4个红球,若从中任意选取2个,则所选的2个球至少有1个红球的概率是_.13.有5条长度分别为1,3,5,7,9的线段,从中任意取出3条,则所取3条线段可构成三角形的概率是_.14.用辗转相除法求出153和119的最大公约数是_.三、解答题15.从一箱产品中随机地
5、抽取一件产品,设事件A=“抽到的一等品”,事件B=“抽到的二等品”,事件C=“抽到的三等品”,且已知,求下列事件的概率: 事件D=“抽到的是一等品或二等品”; 事件E=“抽到的是二等品或三等品”16.一组数据按从小到大顺序排列,得到-1,0,4,x,7,14中位数为5,求这组数据的平均数和方差.17.由经验得知,在大良天天商场付款处排队等候付款的人数及其概率如下图:排队人数5人及以下678910人及以上概率0.10.160.30.30.10.04求: 至多6个人排队的概率; 至少8个人排队的概率.18.为了测试某批灯光的使用寿命,从中抽取了20个灯泡进行试验,记录如下:(以小时为单位)171、
6、159、168、166、170、158、169、166、165、162168、163、172、161、162、167、164、165、164、167 列出样本频率分布表; 画出频率分布直方图; 从频率分布的直方图中,估计这些灯泡的使用寿命。19.五个学生的数学与物理成绩如下表:学生ABCDE数学8075706560物理7066686462 作出散点图和相关直线图; 求出回归方程.20.铁路部门托运行李的收费方法如下:y是收费额(单位:元),x是行李重量(单位:),当时,按0.35/ 收费,当 时,20的部分按0.35元/,超出20的部分,则按0.65元/收费. 请根据上述收费方法求出Y关于X的
7、函数式;画出流程图.数学必修三答案一、 选择题 1.B 2.D 3.B 4.D 5. C 6.B 7.A 8.C 9.C 10.D二、填空题 11. 0.32 12. 13. 14. 17三、解答题15.解:=0.7+0.1=0.8=0.1+0.05=0.1516.解:1.排列式:-1,0,4,x,7,14 中位数是5,且有偶数个数 这组数为-1,0,4,6,7,14 17.解:频率/组距 18.解:(1) (2)频数频率0.250.450.30.091731681581630.06小时0.056070物理80607019.解:数学(1) (2)20.解: 程序如下:INPUT “请输入行李的
8、重量”;xIF x20 THEN y=ELSE y=END IFPRINT “金额为”;yEND高一数学必修三总测题(B组)班次 学号 姓名 一、选择题1. 下面一段程序执行后输出结果是 ( )程序: A=2 A=A*2 A=A+6 PRINT AA. 2 B. 8 C. 10 D. 182. 学校为了了解高一学生的情况,从每班抽2人进行座谈;一次数学竞赛中,某班有10人在110分以上,40人在90100分,12人低于90分.现在从中抽取12人了解有关情况;运动会服务人员为参加400m决赛的6名同学安排跑道.就这三件事,合适的抽样方法为 ( )A. 分层抽样,分层抽样,简单随机抽样 B. 系统
9、抽样,系统抽样,简单随机抽样C. 分层抽样,简单随机抽样,简单随机抽样 D. 系统抽样,分层抽样,简单随机抽样3. 某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自的课外阅读所用的时间数据,结果可以用右图中的条形图表示,根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( )A. 0.6h B. 0.9h C. 1.0h D. 1.5h4. 若角的终边上有一点,且,则的值是 ( )A. B. C. D. 15. 从存放号码分别为1,2,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:卡片号码12345678910取到的次数138
10、576131810119 取到号码为奇数的频率是 ( )A. 0.53 B. 0.5 C. 0.47 D. 0.376. 的平均数是,方差是,则另一组数的平均数和方差分别是 ( )A. B. C. D. 7. 如下图所示,程序执行后的输出结果为了 ( )开始输出结束第题图A. -1 B. 0 C. 1 D. 28. 从1,2,3,4,5中任取两个不同的数字,构成一个两位数,则这个数字大于40的概率是( )A. B. C. D. 9. 下列对古典概型的说法中正确的个数是 ( ) 试验中所有可能出现的基本事件只有有限个; 每个事件出现的可能性相等; 基本事件的总数为n,随机事件A包含k个基本事件,
11、则; 每个基本事件出现的可能性相等;A. 1 B. 2 C. 3 D. 410.小强和小华两位同学约定下午在大良钟楼公园喷水池旁见面,约定谁先到后必须等10分钟,这时若另一人还没有来就可以离开.如果小强是1:40分到达的,假设小华在1点到2点内到达,且小华在 1点到2点之间何时到达是等可能的,则他们会面的概率是 ( )A. B. C. D.二、填空题11.一个为30,其终边按逆时针方向转三周得到的角的度数为_. 若,且,那么的值是_.12.下列说法: 设有一批产品,其次品率为0.05,则从中任取200件,必有10件次品; 做100次抛硬币的试验,有51次出现正面.因此出现正面的概率是0.51;
12、 随机事件A的概率是频率值,频率是概率的近似值; 随机事件A的概率趋近于0,即P(A)0,则A是不可能事件; 抛掷骰子100次,得点数是1的结果是18次,则出现1点的频率是; 随机事件的频率就是这个事件发生的概率;其中正确的有_13.在图的正方形中随机撒一把芝麻,用随机模拟的方法来估计圆周率的值.如果撒了1000个芝麻,落在圆内的芝麻总数是776颗,那么这次模拟中的估计值是_.(精确到0.001) 14.设有以下两个程序:程序(1) A=-6 程序(2) x=1/3 B=2 i=1 If A0 then while i3 A=-A x=1/(1+x) END if i=i+1 B=B2 wen
13、d A=A+B print x C=A-2*B end A=A/C B=B*C+1 Print A,B,C 程序(1)的输出结果是_,_,_. 程序(2)的输出结果是_.三、解答题15.某次数学考试中,其中一个小组的成绩是:55, 89, 69, 73, 81, 56, 90, 74, 82.试画一个程序框图:程序中用S(i)表示第i个学生的成绩,先逐个输入S(i)( i=1,2,),然后从这些成绩中搜索出小于75的成绩.(注意:要求程序中必须含有循环结构)16.对某种电子元件的使用寿命进行调查,抽样200个检验结果如表:寿命(h)个数2030804030 列出频率分布表; 画出频率分布直方图
14、以及频率分布折线图; 估计电子元件寿命在100h400h以内的频率; 估计电子元件寿命在400h以上的频率.17.假设有5个条件类似的女孩,把她们分别记为A,C,J,K,S.她们应聘秘书工作,但只有3个秘书职位.因此5人中仅仅有3人被录用,如果这5个人被录用的机会均等,分别求下列事件的概率: 女孩K得到一个职位; 女孩K和S各自得到一个职位; 女孩K或者S得到一个职位.18.已知回归直线方程是:,其中,.假设学生在高中时数学成绩和物理成绩是线性相关的,若10个学生在高一下学期某次考试中数学成绩x(总分150分)和物理成绩y(总分100分)如下:x122131126111125136118113
15、115112y87949287909683847984试求这次高一数学成绩和物理成绩间的线性回归方程(系数精确到0.001)若小红这次考试的物理成绩是93分,你估计她的数学成绩是多少分呢?19.(1)单位圆上的两个动点M,N,同时从点P(1,0)出发,沿圆周运动,M点按逆时针方向旋转,速度为弧度/秒;N点按顺时针方向旋转,速度为弧度/秒,试求他们出发后第三次相遇时所用的时间以及各自所走的弧度数.x0y(2)如图,某大风车的半径为2米,每12秒旋转一周,它的最低点O离地面0.5米.风车圆周上一点A从最低点O开始,运动t秒后与地面的距离为h米.以O为原点,过点O的圆的切线为x轴,建立直角坐标系.
16、假设和的夹角为,求关于t的关系式; 当t=4秒时,求扇形的面积; 求函数h=f(t)的关系式.数学必修三总测题B组一.选择题1.C 2.D 3.B 4.C 5. A 6.C 7.B 8.A 9.C 10.D二、填空题11. 12. 、 13. 3.104 14. (1)5、 9、 2;(2)三、解答题15结束开始输入YN输出NY16.解:(1) (2) 略区间频数频率100频率/组距200.10.001300.150.0015800.43000.004400.20.002300.151000.0015(3)=0.65 (4)=0.3517.解:总数:=10 (1) (2) (3) 18.解:(1) (2)数学成绩: 19.(1)解:设t秒中后第三次相遇则19.(2)解:(1)36012=30 (2)当, (3)