资源描述
,单击此处编辑母版标题样式,*,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,第五节,力的合成,一,.,几个概念,1.合力、分力:P,1,1,强调:“效果”,理解注意:合力与分力是等效替代的关系,它们不是同时作用在物体上,.,F,1,F,2,F,2.力的合成:P,1,1,强调,:,几个分力具有同时性,3.共点力:P,1,1,.,二,.,两个互成角度共点力的合成,仪器介绍,实验原理,实验探索,结论猜测,实验结论,示教板,、,橡皮筋、细线、图钉、钩码、铅笔、刻度尺,.,让前后两次拉动橡皮筋的形变效果相等,.,即,:,拉至同一点,O.,用图示法作出每个力,.(,注意确定方向和记录大小,),F,1,、,F,2,与,F,能够构成什么图形?,平行四边形定则,.,1.,平行四边形定则,:P,12,O,F,1,F,2,F,注意:,力是,矢量,。,力既有大小又有方向,,共点力,的合成遵守平行四边形法则,只有大小没有方向求和时按算术法则运算的量是,标量,P,13,例题,:,略,解,:,方法一,.,作图法,:,1.选标度:6,mm,代表15N,15N,6mm,2.,分别作出,F,1,、,F,2,两个力的图示,O,F,1,F,2,F,3.,根据力的平行四边形定则,作出,F,1,、,F,2,两分力的合力,F.,4.,用刻度尺测量合力,F,的长度,用比例关系计算出,F,的大小,.,5.,用量角器测量合力,F,与某已知方向间的夹角,用以,表示力的方向,.,方法二,.,计算法,:,应用几何知识,由勾股定理,计算力的大小,:,指明力的方向,F,1,F,2,F,16N,F,1,F,2,O,F=,O,F,1,F,2,F=,F,1,F,2,F=,8N,F,1,F,2,F=,0N,F,1,F,2,F=,0N,F,1,F,2,F=16sin75,0,用计算法完成思考讨论的问题,2.,讨论当两分力大小不变时,合力的大小与两分力夹角的关系,.,(1),两力同向,:,大小,F=F,1,+F,2,方向与两力方向相同,.,两力反向,:,大小,F=F,1,-F,2,方向与较大的那个力相同,.,(2),当,合力,F,随夹角的增大而减小,;0,0,时合力最大,180,0,时合力最小,.,两分力大小相等且夹角等于,120,0,时,合力等于每个分力的大小,.,(3),讨论:,(,1,)、两个大小确定的共点力,若夹角逐渐增大,则合力如何变化?,(2)、如图,用两根绳子掉着一个物体使它处于静止状态,逐渐增大两根绳子间的夹角,则两根绳子对物体的拉力的合力将如何变化?,绳上拉力如何变化?,三,.,力合成的三角形定则,O,F,1,F,2,F,两共点力,F,1,、,F,2,固定,F,1,不动,平移,F,2,使,F,2,与,F,1,实现首尾相接,则从,F,1,的起点到,F,2,末端的有向线段即为此二力的合力,F.,四、多个共点力合成,也可以应用平行四边形法则或三角形法则,F1,F2,F3,F4,F,合,F4,F3,F2,F1,F,1,F,2,F,合,1,F,3,F,合,2,第六节 力的分解,一,.,力的分解,1.,概念:,F,1,F,2,F,2.,遵循的定则,:平行四边形定则,.,力的合成,力的分解,O,F,F,1,F,2,二,.,力的分解的一般方法,1.,重力的存在使物体产生了哪些实际效果,?,2.,有同学说,:,重力可以分解为沿斜面的向下的分力,F,1,和物块压斜面的压力,F,2,这种说法对吗,?,为什么,?,使物块沿斜面下滑,使物块压紧斜面,按照力的实际作用效果进行分解,例,2:,分解静止在倾角为 斜面上物块的重力,G.,G,F,1,F,2,G,1,=Gsin,G,2,=Gcos,沿斜面方向,:,垂直于斜面方向,:,3.,应用相关知识解释,:,为什么高大的桥要造很长的引桥,?,O,T,A,B,例,3.,分解悬线对支架端点的拉力,T.,T,1,T,2,对上端杆,AO,产生拉的效果,:,对下端杆,OB,产生压的效果,:,因为,T,2,/T=tan ,所以,T,2,=Ttan,O,小结,:,对支架端点拉力的分解原则,:,上拉下压,.,力的分解的一般步骤,1.,作出待分解的已知力,(,合力,),2.,按照力的实际作用效果确定两分力的方向,3.,以已知力为对角线作平行四边形,4.,应用几何知识计算出分力的大小,.,正交分解法可以求多个力的合力,步骤:,正交分解,将物体的受力分解到两个相互垂直的坐标轴上的分解方法,.,G,G,1,G,2,x,y,一个力分解为两个力有定解的讨论,1).,已知合力和两分力的方向,.,2).,已知合力和一分力的大小和方向,.,3),.,已知合力和一分力的大小,、另一分力的,方向,练习,1,:分解细绳对两绳结点的拉力T.,绳长AO=BO,T,1,T,2,O,T,A,B,对绳,AO,、,BO,均产生拉长的效果,.,绳长,AO=BO,,则两分力所形成的平行四边形是菱形,其对角线垂直平分,.,2T,1,COS =T,T,1,=T,2,=T/2COS,T,G,1.,重力的存在使物体产生了哪些实际效果,?,使小球拉紧线绳,使小球压紧斜面,l,练习,2.小球在线绳的拉力作用下处于静止状态,分解小球的重力G.,G,1,=Gsin,G,2,=Gcos,沿斜面方向,:,垂直于斜面方向,:,G,1,G,2,题型变换,:,在上题中,若线绳拉力的方向不平行于斜面,怎样分解重力,G?,G,G,1,G,2,使小球拉紧线绳,使小球压紧斜面,G,1,G,2,沿线绳拉力方向分解,:,垂直于斜面方向分解,:,(1),小球在平行于斜面的线绳的拉力作用下静止在倾角为 的斜面上,分解小球的重力,G.,G,练习,3.如图所示,小球的重力G,请问:绳对小球的拉力和小球对墙壁的压力各是多大?,G,2,G,1,小球对绳的拉力,T,在数值上等于,G,1,小球对墙壁的压力,N,在数值上等于,G,2,.,G,T,N,练习,4.如图所示,重为G半径为r的小球,在线绳的拉力作用下,静止在半径为R的大球面上,求绳对小球的拉力和小球对球面的压力各是多大?(绳长L,悬点O到大球的顶点距离为h),G,1,G,2,解析,:,小球的重力,G,的一个分力,G,1,沿着绳的方向,具有拉长绳的效果,;,另一个分力,G,2,指向大球圆心,O,使小球压紧大球面,.,小球重力的一个分力,G,1,在数值上等于绳对小球的拉力,T,的大小,;,小球的另一个分力,G,2,在数值上等于小球对大球面的压力,N,的大小,.,O,O,G,P,L,h,R,因为,G,1,G,2,O,O,G,P,L,h,R,故,G,T,F,F,合,一个力分解为一对确定的分力条件,.,1).,已知合力和两分力的方向,.,2).,已知合力和一分力的大小和方向,.,F,2,O,F,F,1,O,F,F,1,F,2,
展开阅读全文