资源描述
,高考专题突破三,高考中数列问题,1/47,考点自测,课时作业,题型分类深度剖析,内容索引,2/47,考点自测,3/47,1.(,苏州,月考,),数列,a,n,是公差不为,0,等差数列,且,a,1,,,a,3,,,a,7,为等比数列,b,n,中连续三项,则数列,b,n,公比为,_.,答案,解析,设数列,a,n,公差为,d,(,d,0),,,由,a,1,a,7,,得,(,a,1,2,d,),2,a,1,(,a,1,6,d,),,解得,a,1,2,d,,,2,4/47,2.,已知等差数列,a,n,前,n,项和为,S,n,,,a,5,5,,,S,5,15,,则数列,前,100,项和为,_.,答案,解析,设等差数列,a,n,首项为,a,1,,公差为,d,.,a,n,a,1,(,n,1),d,n,.,a,5,5,,,S,5,15,,,5/47,3.(,南通、淮安模拟,),在等比数列,a,n,中,,a,2,1,,公比,q,1.,若,a,1,,,4,a,3,,,7,a,5,成等差数列,则,a,6,值是,_.,答案,解析,因为,a,n,为等比数列,且,a,2,1,,所以,a,1,,,a,3,q,,,a,5,q,3,,,由,a,1,,,4,a,3,,,7,a,5,成等差数列得,8,q,7,q,3,,,解得,q,2,1(,舍去,),或,q,2,,故,a,6,a,2,q,4,.,6/47,4.(,课标全国,),设,S,n,是数列,a,n,前,n,项和,且,a,1,1,,,a,n,1,S,n,S,n,1,,,则,S,n,_.,答案,解析,由题意,得,S,1,a,1,1,,又由,a,n,1,S,n,S,n,1,,得,S,n,1,S,n,S,n,S,n,1,,,因为,S,n,0,,所以,1,,,所以,1,(,n,1),n,,所以,S,n,.,7/47,5.,已知数列,a,n,前,n,项和为,S,n,,对任意,n,N,*,都有,S,n,,若,1,S,k,9,(,k,N,*,),,则,k,值为,_.,答案,解析,4,由题意,,S,n,,,当,n,2,时,,S,n,1,,,两式相减,得,a,n,,,a,n,是以,1,为首项,以,2,为公比等比数列,,a,n,(,2),n,1,,,由,1,S,k,9,,得,4(,2),k,28,,,又,k,N,*,,,k,4.,a,n,2,a,n,1,,,又,a,1,1,,,8/47,题型分类深度剖析,9/47,题型一等差数列、等比数列综合问题,例,1,(,苏州暑假测试,),已知等差数列,a,n,公差为,2,,其前,n,项和,S,n,pn,2,2,n,,,n,N,*,.,(1),求实数,p,值及数列,a,n,通项公式;,解答,S,n,na,1,na,1,n,(,n,1),n,2,(,a,1,1),n,,,又,S,n,pn,2,2,n,,,n,N,*,,,所以,p,1,,,a,1,1,2,,即,a,1,3,,,所以,a,n,3,2(,n,1),2,n,1.,10/47,(2),在等比数列,b,n,中,,b,3,a,1,,,b,4,a,2,4,,若,b,n,前,n,项和为,T,n,.,求证:,数列,T,n,为等比数列,.,证实,因为,b,3,a,1,3,,,b,4,a,2,4,9,,所以,q,3.,所以,b,n,b,3,q,n,3,3,3,n,3,3,n,2,,所以,b,1,.,所以数列,T,n,是以,为首项,,3,为公比等比数列,.,11/47,等差数列、等比数列综合问题解题策略,(1),分析已知条件和求解目标,为最终处理问题设置中间问题,比如求和需要先求出通项、求通项需要先求出首项和公差,(,公比,),等,确定解题次序,.,(2),注意细节:在等差数列与等比数列综合问题中,假如等比数列公比不能确定,则要看其是否有等于,1,可能,在数列通项问题中第一项和后面项能否用同一个公式表示等,这些细节对解题影响也是巨大,.,思维升华,12/47,跟踪训练,1,在等差数列,a,n,中,,a,10,30,,,a,20,50.,(1),求数列,a,n,通项公式;,解答,设数列,a,n,公差为,d,,则,a,n,a,1,(,n,1),d,,,由,a,10,30,,,a,20,50,,得方程组,解得,所以,a,n,12,(,n,1)2,2,n,10.,13/47,(2),令,b,n,,证实:数列,b,n,为等比数列;,证实,由,(1),,得,b,n,2,a,n,10,2,2,n,10,10,2,2,n,4,n,,,所以,b,n,是首项为,4,,公比为,4,等比数列,.,14/47,(3),求数列,nb,n,前,n,项和,T,n,.,解答,由,nb,n,n,4,n,,得,T,n,1,4,2,4,2,n,4,n,,,4,T,n,1,4,2,(,n,1),4,n,n,4,n,1,,,,得,3,T,n,4,4,2,4,n,n,4,n,1,15/47,题型二数列通项与求和,例,2,已知数列,a,n,前,n,项和为,S,n,,在数列,b,n,中,,b,1,a,1,,,b,n,a,n,a,n,1,(,n,2),,且,a,n,S,n,n,.,(1),设,c,n,a,n,1,,求证:,c,n,是等比数列;,证实,a,n,S,n,n,,,a,n,1,S,n,1,n,1.,,得,a,n,1,a,n,a,n,1,1,,,2,a,n,1,a,n,1,,,2(,a,n,1,1),a,n,1,,,a,n,1,是等比数列,.,首项,c,1,a,1,1,,又,a,1,a,1,1.,又,c,n,a,n,1,,,c,n,是以,为首项,,为公比等比数列,.,16/47,(2),求数列,b,n,通项公式,.,解答,a,n,c,n,1,1,(),n,.,当,n,2,时,,b,n,a,n,a,n,1,又,b,1,a,1,,代入上式也符合,,b,n,(),n,.,17/47,(1),普通求数列通项往往要结构数列,此时要从证结论出发,这是很主要解题信息,.,(2),依据数列特点选择适当求和方法,惯用有错位相减法,分组求和法,裂项求和法等,.,思维升华,18/47,跟踪训练,2,已知,a,n,是等差数列,其前,n,项和为,S,n,,,b,n,是等比数列,且,a,1,b,1,2,,,a,4,b,4,21,,,S,4,b,4,30.,(1),求数列,a,n,和,b,n,通项公式;,解答,设等差数列,a,n,公差为,d,,等比数列,b,n,公比为,q,.,由,a,1,b,1,2,,得,a,4,2,3,d,,,b,4,2,q,3,,,S,4,8,6,d,.,由条件,a,4,b,4,21,,,S,4,b,4,30,,,所以,a,n,n,1,,,b,n,2,n,,,n,N,*,.,19/47,(2),记,c,n,a,n,b,n,,,n,N,*,,求数列,c,n,前,n,项和,.,解答,由题意知,c,n,(,n,1),2,n,.,记,T,n,c,1,c,2,c,3,c,n,.,则,T,n,2,2,3,2,2,4,2,3,n,2,n,1,(,n,1),2,n,,,2,T,n,2,2,2,3,2,3,(,n,1),2,n,1,n,2,n,(,n,1)2,n,1,,,所以,T,n,2,2,(2,2,2,3,2,n,),(,n,1),2,n,1,,,即,T,n,n,2,n,1,,,n,N,*,.,20/47,题型三数列与其它知识交汇,命题点,1,数列与函数交汇,例,3,已知二次函数,f,(,x,),ax,2,bx,图象过点,(,4,n,0),,且,f,(0),2,n,,,n,N,*,,数列,a,n,满足,,且,a,1,4.,(1),求数列,a,n,通项公式;,解答,21/47,f,(,x,),2,ax,b,,由题意知,b,2,n,,,16,n,2,a,4,nb,0,,,a,,,则,f,(,x,),2,nx,,,n,N,*,.,数列,a,n,满足,又,f,(,x,),x,2,n,,,由叠加法可得,2,4,6,2(,n,1),n,2,n,,,化简可得,a,n,(,n,2),,,当,n,1,时,,a,1,4,也符合,,a,n,(,n,N,*,).,22/47,(2),记,b,n,,求数列,b,n,前,n,项和,T,n,.,解答,T,n,b,1,b,2,b,n,23/47,命题点,2,数列与不等式交汇,例,4,设各项均为正数数列,a,n,前,n,项和为,S,n,,且,S,n,满足,(,n,2,n,3),S,n,3(,n,2,n,),0,,,n,N,*,.,(1),求,a,1,值;,令,n,1,代入得,a,1,2(,负值舍去,).,解答,24/47,(2),求数列,a,n,通项公式;,解答,由,(,n,2,n,3),S,n,3(,n,2,n,),0,,,n,N,*,,,得,S,n,(,n,2,n,)(,S,n,3),0.,又已知数列,a,n,各项均为正数,故,S,n,n,2,n,.,当,n,2,时,,a,n,S,n,S,n,1,n,2,n,(,n,1),2,(,n,1),2,n,,,当,n,1,时,,a,1,2,也满足上式,,a,n,2,n,,,n,N,*,.,25/47,证实,k,N,*,,,4,k,2,2,k,(3,k,2,3,k,),k,2,k,k,(,k,1),0,,,4,k,2,2,k,3,k,2,3,k,,,不等式成立,.,26/47,命题点,3,数列应用题,例,5,(,南京模拟,),某企业一下属企业从事某种高科技产品生产,.,该企业第一年年初有资金,2 000,万元,将其投入生产,到当年年底资金增加了,50%.,预计以后每年年增加率与第一年相同,.,企业要求企业从第一年开始,每年年底上缴资金,d,万元,并将剩下资金全部投入下一年生产,.,设第,n,年年底企业上缴资金后剩下资金为,a,n,万元,.,(1),用,d,表示,a,1,,,a,2,,并写出,a,n,1,与,a,n,关系式;,解答,27/47,由题意,得,a,1,2 000(1,50%),d,3 000,d,,,a,2,a,1,(1,50%),d,a,1,d,4 500,,,a,n,1,a,n,(1,50%),d,d,.,28/47,(2),若企业希望经过,m,(,m,3),年使企业剩下资金为,4 000,万元,试确定企业每年上缴资金,d,值,(,用,m,表示,).,解答,29/47,由,(1),,得,a,n,a,n,1,d,(,a,n,2,d,),d,整理,得,a,n,(),n,1,(3 000,d,),2,d,(),n,1,1,(),n,1,(3 000,3,d,),2,d,.,由题意,得,a,m,4 000,,,即,(),m,1,(3 000,3,d,),2,d,4 000.,故该企业每年上缴资金,d,值为,时,经过,m,(,m,3),年企业剩下资金为,4 000,万元,.,30/47,数列与其它知识交汇问题常见类型及解题策略,(1),数列与函数交汇问题,已知函数条件,处理数列问题,这类问题普通利用函数性质、图象研究数列问题;,已知数列条件,处理函数问题,处理这类问题普通要充分利用数列范围、公式、求和方法对式子化简变形,.,另外,解题时要注意数列与函数内在联络,灵活利用函数思想方法求解,在问题求解过程中往往会碰到递推数列,所以掌握递推数列常看法法有利于该类问题处理,.,思维升华,31/47,(2),数列与不等式交汇问题,函数方法:即结构函数,经过函数单调性、极值等得出关于正实数不等式,经过对关于正实数不等式特殊赋值得出数列中不等式;,放缩方法:数列中不等式能够经过对中间过程或者最终结果放缩得到;,比较方法:作差或者作商比较,.,(3),数列应用题,依据题意,确定数列模型;,准确求解模型;,问题作答,不要忽略问题实际意义,.,32/47,跟踪训练,3,设等差数列,a,n,公差为,d,,点,(,a,n,,,b,n,),在函数,f,(,x,),2,x,图象上,(,n,N,*,).,(1),若,a,1,2,,点,(,a,8,,,4,b,7,),在函数,f,(,x,),图象上,求数列,a,n,前,n,项和,S,n,;,解答,由已知,得,b,7,,,b,8,4,b,7,,,有,解得,d,a,8,a,7,2.,所以,S,n,na,1,2,n,n,(,n,1),n,2,3,n,.,33/47,(2),若,a,1,1,,函数,f,(,x,),图象在点,(,a,2,,,b,2,),处切线在,x,轴上截距为,2,,求数列,前,n,项和,T,n,.,解答,f,(,x,),2,x,ln 2,,,f,(,a,2,),2,a,2,ln 2,,,故函数,f,(,x,),2,x,在,(,a,2,,,b,2,),处切线方程为,y,2,a,2,2,a,2,ln 2(,x,a,2,),,,它在,x,轴上截距为,a,2,.,解得,a,2,2.,由题意,得,a,2,2,,,所以,d,a,2,a,1,1.,从而,a,n,n,,,b,n,2,n,.,所以,T,n,.,34/47,课时作业,35/47,1.(,全国甲卷,),等差数列,a,n,中,,a,3,a,4,4,,,a,5,a,7,6.,(1),求,a,n,通项公式;,解答,设数列,a,n,公差为,d,,由题意有,2,a,1,5,d,4,,,a,1,5,d,3.,解得,a,1,1,,,d,.,所以,a,n,通项公式为,a,n,.,1,2,3,4,5,36/47,(2),设,b,n,a,n,,求数列,b,n,前,10,项和,其中,x,表示不超出,x,最大整数,如,0.9,0,,,2.6,2.,解答,由,(1),知,,b,n,.,当,n,1,2,3,时,,1,2,,,b,n,1,;,当,n,4,5,时,,2,3,,,b,n,2,;,所以数列,b,n,前,10,项和为,1,3,2,2,3,3,4,2,24.,当,n,6,7,8,时,,3,4,,,b,n,3,;,当,n,9,10,时,,4,1,,,a,n,前,n,项和为,S,n,,等比数列,b,n,首项为,1,,公比为,q,(,q,0),,前,n,项和为,T,n,.,若存在正整数,m,,使得,T,3,,求,q,.,解答,因为,a,1,1,,所以,a,n,6,n,3,,从而,S,n,3,n,2,.,由,T,3,,得,1,q,q,2,,,整理得,q,2,q,1,0.,因为,1,4(1,),0,,所以,m,2,.,因为,m,N,*,,所以,m,1,或,m,2.,当,m,1,时,,q,(,舍去,),或,q,.,当,m,2,时,,q,0,或,q,1(,均舍去,).,总而言之,,q,.,1,2,3,4,5,44/47,5.,在等比数列,a,n,中,,a,n,0(,n,N,*,),,公比,q,(0,1),,且,a,1,a,5,2,a,3,a,5,a,2,a,8,25,,又,a,3,与,a,5,等比中项为,2.,(1),求数列,a,n,通项公式;,解答,a,1,a,5,2,a,3,a,5,a,2,a,8,25,,,又,a,n,0,,,a,3,a,5,5,,,(,a,3,a,5,),2,25,,,又,a,3,与,a,5,等比中项为,2,,,a,3,a,5,4,,而,q,(0,1),,,a,3,a,5,,,a,3,4,,,a,5,1,,,q,,,a,1,16,,,a,n,16,(),n,1,2,5,n,.,1,2,3,4,5,45/47,(2),设,b,n,log,2,a,n,,求数列,b,n,前,n,项和,S,n,;,解答,b,n,log,2,a,n,5,n,,,b,n,1,b,n,1,,,b,1,log,2,a,1,log,2,16,log,2,2,4,4,,,b,n,是以,b,1,4,为首项,,1,为公差等差数列,,1,2,3,4,5,46/47,(3),是否存在,k,N,*,,使得,0,;当,n,9,时,,0,;,当,n,9,时,,0.,当,n,8,或,n,9,时,,故存在,k,N,*,,使得,对任意,n,N,*,恒成立,,k,最小值为,19.,1,2,3,4,5,47/47,
展开阅读全文