资源描述
2025年吉林省汪清县六中高三数学第一学期期末监测试题
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合的所有三个元素的子集记为.记为集合中的最大元素,则( )
A. B. C. D.
2.阅读如图的程序框图,运行相应的程序,则输出的的值为( )
A. B. C. D.
3.设全集,集合,,则( )
A. B. C. D.
4.函数的图象如图所示,为了得到的图象,可将的图象( )
A.向右平移个单位 B.向右平移个单位
C.向左平移个单位 D.向左平移个单位
5.函数的部分图象如图所示,已知,函数的图象可由图象向右平移个单位长度而得到,则函数的解析式为( )
A. B.
C. D.
6.已知等差数列的前13项和为52,则( )
A.256 B.-256 C.32 D.-32
7.已知我市某居民小区户主人数和户主对户型结构的满意率分别如图和如图所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为
A.240,18 B.200,20
C.240,20 D.200,18
8.若的展开式中的系数之和为,则实数的值为( )
A. B. C. D.1
9.的展开式中,项的系数为( )
A.-23 B.17 C.20 D.63
10.已知函数在上单调递增,则的取值范围( )
A. B. C. D.
11.( )
A. B. C. D.
12.函数的图象大致为( )
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.在直角坐标系中,已知点和点,若点在的平分线上,且,则向量的坐标为___________.
14.在回归分析的问题中,我们可以通过对数变换把非线性回归方程,()转化为线性回归方程,即两边取对数,令,得到.受其启发,可求得函数()的值域是_________.
15.已知椭圆的左焦点为,点在椭圆上且在轴的上方,若线段的中点在以原点为圆心,为半径的圆上,则直线的斜率是_______.
16.已知关于的方程在区间上恰有两个解,则实数的取值范围是________
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知都是大于零的实数.
(1)证明;
(2)若,证明.
18.(12分)已知函数,直线是曲线在处的切线.
(1)求证:无论实数取何值,直线恒过定点,并求出该定点的坐标;
(2)若直线经过点,试判断函数的零点个数并证明.
19.(12分)已知为坐标原点,单位圆与角终边的交点为,过作平行于轴的直线,设与终边所在直线的交点为,.
(1)求函数的最小正周期;
(2)求函数在区间上的值域.
20.(12分)已知等差数列的前n项和为,且,.
求数列的通项公式;
求数列的前n项和.
21.(12分)在多面体中,四边形是正方形,平面,,,为的中点.
(1)求证:;
(2)求平面与平面所成角的正弦值.
22.(10分)已知函数.
(1)讨论的单调性;
(2)曲线在点处的切线斜率为.
(i)求;
(ii)若,求整数的最大值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.B
【解析】
分类讨论,分别求出最大元素为3,4,5,6的三个元素子集的个数,即可得解.
【详解】
集合含有个元素的子集共有,所以.
在集合中:
最大元素为的集合有个;
最大元素为的集合有;
最大元素为的集合有;
最大元素为的集合有;
所以.
故选:.
此题考查集合相关的新定义问题,其本质在于弄清计数原理,分类讨论,分别求解.
2.C
【解析】
根据给定的程序框图,计算前几次的运算规律,得出运算的周期性,确定跳出循环时的n的值,进而求解的值,得到答案.
【详解】
由题意,,
第1次循环,,满足判断条件;
第2次循环,,满足判断条件;
第3次循环,,满足判断条件;
可得的值满足以3项为周期的计算规律,
所以当时,跳出循环,此时和时的值对应的相同,即.
故选:C.
本题主要考查了循环结构的程序框图的计算与输出问题,其中解答中认真审题,得出程序运行时的计算规律是解答的关键,着重考查了推理与计算能力.
3.D
【解析】
求解不等式,得到集合A,B,利用交集、补集运算即得解
【详解】
由于
故集合
或
故集合
故选:D
本题考查了集合的交集和补集混合运算,考查了学生概念理解,数学运算的能力,属于中档题.
4.C
【解析】
根据正弦型函数的图象得到,结合图像变换知识得到答案.
【详解】
由图象知:,∴.
又时函数值最大,
所以.又,
∴,从而,,
只需将的图象向左平移个单位即可得到的图象,
故选C.
已知函数的图象求解析式
(1).(2)由函数的周期求
(3)利用“五点法”中相对应的特殊点求,一般用最高点或最低点求.
5.A
【解析】
由图根据三角函数图像的对称性可得,利用周期公式可得,再根据图像过,即可求出,再利用三角函数的平移变换即可求解.
【详解】
由图像可知,即,
所以,解得,
又,
所以,由,
所以或,
又,
所以,,
所以,,
即,
因为函数的图象由图象向右平移个单位长度而得到,
所以.
故选:A
本题考查了由图像求三角函数的解析式、三角函数图像的平移伸缩变换,需掌握三角形函数的平移伸缩变换原则,属于基础题.
6.A
【解析】
利用等差数列的求和公式及等差数列的性质可以求得结果.
【详解】
由,,得.选A.
本题主要考查等差数列的求和公式及等差数列的性质,等差数列的等和性应用能快速求得结果.
7.A
【解析】
利用统计图结合分层抽样性质能求出样本容量,利用条形图能求出抽取的户主对四居室满意的人数.
【详解】
样本容量为:(150+250+400)×30%=240,
∴抽取的户主对四居室满意的人数为:
故选A.
本题考查样本容量和抽取的户主对四居室满意的人数的求法,是基础题,解题时要认真审题,注意统计图的性质的合理运用.
8.B
【解析】
由,进而分别求出展开式中的系数及展开式中的系数,令二者之和等于,可求出实数的值.
【详解】
由,
则展开式中的系数为,展开式中的系数为,
二者的系数之和为,得.
故选:B.
本题考查二项式定理的应用,考查学生的计算求解能力,属于基础题.
9.B
【解析】
根据二项式展开式的通项公式,结合乘法分配律,求得的系数.
【详解】
的展开式的通项公式为.则
①出,则出,该项为:;
②出,则出,该项为:;
③出,则出,该项为:;
综上所述:合并后的项的系数为17.
故选:B
本小题考查二项式定理及展开式系数的求解方法等基础知识,考查理解能力,计算能力,分类讨论和应用意识.
10.B
【解析】
由,可得,结合在上单调递增,易得,即可求出的范围.
【详解】
由,可得,
时,,而,
又在上单调递增,且,
所以,则,即,故.
故选:B.
本题考查了三角函数的单调性的应用,考查了学生的逻辑推理能力,属于基础题.
11.A
【解析】
分子分母同乘,即根据复数的除法法则求解即可.
【详解】
解:,
故选:A
本题考查复数的除法运算,属于基础题.
12.A
【解析】
根据函数的奇偶性和单调性,排除错误选项,从而得出正确选项.
【详解】
因为,所以是偶函数,排除C和D.
当时,,,
令,得,即在上递减;令,得,即在上递增.所以在处取得极小值,排除B.
故选:A
本小题主要考查函数图像的识别,考查利用导数研究函数的单调区间和极值,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13.
【解析】
点在的平分线可知与向量共线,利用线性运算求解即可.
【详解】
因为点在的平线上,
所以存在使,
而,
可解得,
所以,
故答案为:
本题主要考查了向量的线性运算,利用向量的坐标求向量的模,属于中档题.
14.
【解析】
转化()为,即得解.
【详解】
由题意:
().
故答案为:
本题考查类比法求函数的值域,考查了学生逻辑推理,转化划归,数学运算的能力,属于中档题.
15.
【解析】
结合图形可以发现,利用三角形中位线定理,将线段长度用坐标表示成圆的方程,与椭圆方程联立可进一步求解.利用焦半径及三角形中位线定理,则更为简洁.
【详解】
方法1:由题意可知,
由中位线定理可得,设可得,
联立方程
可解得(舍),点在椭圆上且在轴的上方,
求得,所以
方法2:焦半径公式应用
解析1:由题意可知,
由中位线定理可得,即
求得,所以.
本题主要考查椭圆的标准方程、椭圆的几何性质、直线与圆的位置关系,利用数形结合思想,是解答解析几何问题的重要途径.
16.
【解析】
先换元,令,将原方程转化为,利用参变分离法转化为研究两函数的图像交点,观察图像,即可求出.
【详解】
因为关于的方程在区间上恰有两个解,令,所以方程在 上只有一解,即有 ,
直线与 在的图像有一个交点,
由图可知,实数的取值范围是,但是当时,还有一个根,所以此时共有3个根.
综上实数的取值范围是.
本题主要考查学生运用转化与化归思想的能力,方程有解问题转化成两函数的图像有交点问题,是常见的转化方式.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(1)答案见解析.(2)答案见解析
【解析】
(1)利用基本不等式可得,两式相加即可求解.
(2)由(1)知,代入不等式,利用基本不等式即可求解.
【详解】
(1)
两式相加得
(2)由(1)知
于是,
.
本题考查了基本不等式的应用,属于基础题.
18.(1)见解析,(2)函数存在唯一零点.
【解析】
(1)首先求出导函数,利用导数的几何意义求出处的切线斜率,利用点斜式即可求出切线方程,根据方程即可求出定点.
(2)由(1)求出函数,令方程可转化为记,利用导数判断函数在上单调递增,根据,由零点存在性定理即可求出零点个数.
【详解】
所以直线方程为
即,恒过点
将代入直线方程,
得考虑方程
即,等价于
记,
则
于是函数在上单调递增,又
所以函数在区间上存在唯一零点, 即函数存在唯一零点.
本题考查了导数的几何意义、直线过定点、利用导数研究函数的单调性、零点存在性定理,属于难题.
19.(1);(2).
【解析】
(1)根据题意,求得,,因而得出,利用降幂公式和二倍角的正弦公式化简函数,最后利用,求出的最小正周期;
(2)由(1)得,再利用整体代入求出函数的值域.
【详解】
(1) 因为 , ,
所以,
,
所以函数的最小正周期为.
(2)因为,所以
,
所以,
故函数在区间上的值域为.
本题考查正弦型函数的周期和值域,运用到向量的坐标运算、降幂公式和二倍角的正弦公式,考查化简和计算能力.
20.(1);(2).
【解析】
先设出数列的公差为d,结合题中条件,求出首项和公差,即可得出结果.
利用裂项相消法求出数列的和.
【详解】
解:设公差为d的等差数列的前n项和为,
且,.
则有:,
解得:,,
所以:
由于:,
所以:,
则:,
则:,
.
本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,主要考查学生的运算能力和转化能力,属于基础题型.
21.(1)证明见解析(2)
【解析】
(1)首先证明,,,∴平面.即可得到平面,.
(2)以为坐标原点,,,所在的直线分别为轴、轴、轴建立空间直角坐标系,分别求出平面和平面的法向量,带入公式求解即可.
【详解】
(1)∵平面,平面,∴.
又∵四边形是正方形,∴.
∵,∴平面.
∵平面,∴.
又∵,为的中点,∴.
∵,∴平面.
∵平面,∴.
(2)∵平面,,∴平面.
以为坐标原点,,,所在的直线分别为轴、轴、轴建立空间直角坐标系.
如图所示:
则,,,.
∴,,.
设为平面的法向量,
则,得,
令,则.
由题意知为平面的一个法向量,
∴,
∴平面与平面所成角的正弦值为.
本题第一问考查线线垂直,先证线面垂直时解题关键,第二问考查二面角,建立空间直角坐标系是解题关键,属于中档题.
22.(1)在上增;在上减;(2)(i);(ii)2
【解析】
(1)求导求出,对分类讨论,求出的解,即可得出结论;
(2)(i)由,求出的值;
(ii)由(i)得所求问题转化为,恒成立,设
,,只需,根据的单调性,即可求解.
【详解】
(1)
当时,,即在上增;
当时,,,,,
即在上增;在上减;
(2)(i),.
(ⅱ),即,
即,只需.
当时,,在单调递增,
所以满足题意;
当时,,,,
所以在上减,在上增,
令,.
.在单调递减,所以
所以在上单调递减
,,
综上可知,整数的最大值为.
本题考查函数导数的综合应用,涉及函数的单调性、导数的几何意义、极值最值、不等式恒成立,考查分类讨论思想,属于中档题.
展开阅读全文