资源描述
2025-2026学年重庆市第三十七中学校高三数学第一学期期末综合测试模拟试题
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.的展开式中的常数项为( )
A.-60 B.240 C.-80 D.180
2.函数图像可能是( )
A. B. C. D.
3.中国古代用算筹来进行记数,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯记数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、方位……用纵式表示,十位、千位、十万位……用横式表示,则56846可用算筹表示为( )
A. B. C. D.
4.已知向量,满足||=1,||=2,且与的夹角为120°,则=( )
A. B. C. D.
5.若实数满足的约束条件,则的取值范围是( )
A. B. C. D.
6.设实数、满足约束条件,则的最小值为( )
A.2 B.24 C.16 D.14
7.已知抛物线的焦点为,对称轴与准线的交点为,为上任意一点,若,则( )
A.30° B.45° C.60° D.75°
8.设复数满足(为虚数单位),则在复平面内对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
9.若时,,则的取值范围为( )
A. B. C. D.
10.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )
A. B. C. D.
11.为了进一步提升驾驶人交通安全文明意识,驾考新规要求驾校学员必须到街道路口执勤站岗,协助交警劝导交通.现有甲、乙等5名驾校学员按要求分配到三个不同的路口站岗,每个路口至少一人,且甲、乙在同一路口的分配方案共有( )
A.12种 B.24种 C.36种 D.48种
12.若复数满足(是虚数单位),则( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.设数列的前n项和为,且,若,则______________.
14.已知数列满足:,,若对任意的正整数均有,则实数的最大值是_____.
15.已知函数则______.
16.我国古代数学名著《九章算术》对立体几何有深入的研究,从其中一些数学用语可见,譬如“憋臑”意指四个面都是直角三角形的三棱锥.某“憋臑”的三视图(图中网格纸上每个小正方形的边长为1)如图所示,已知几何体高为,则该几何体外接球的表面积为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数.
(1)求不等式的解集;
(2)若不等式在上恒成立,求实数的取值范围.
18.(12分)已知椭圆C:(a>b>0)的两个焦点分别为F1(-,0)、F2(,0).点M(1,0)与椭圆短轴的两个端点的连线相互垂直.
(1)求椭圆C的方程;
(2)已知点N的坐标为(3,2),点P的坐标为(m,n)(m≠3).过点M任作直线l与椭圆C相交于A、B两点,设直线AN、NP、BN的斜率分别为k1、k2、k3,若k1+k3=2k2,试求m,n满足的关系式.
19.(12分)已知函数.
(1)求曲线在点处的切线方程;
(2)若对任意的,当时,都有恒成立,求最大的整数.
(参考数据:)
20.(12分)在平面直角坐标系xOy中,曲线C的参数方程为(为参数).以原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位,建立极坐标系.
(1)设直线l的极坐标方程为,若直线l与曲线C交于两点A.B,求AB的长;
(2)设M、N是曲线C上的两点,若,求面积的最大值.
21.(12分)某公司为了鼓励运动提高所有用户的身体素质,特推出一款运动计步数的软件,所有用户都可以通过每天累计的步数瓜分红包,大大增加了用户走步的积极性,所以该软件深受广大用户的欢迎.该公司为了研究“日平均走步数和性别是否有关”,统计了2019年1月份所有用户的日平均步数,规定日平均步数不少于8000的为“运动达人”,步数在8000以下的为“非运动达人”,采用按性别分层抽样的方式抽取了100个用户,得到如下列联表:
运动达人
非运动达人
总计
男
35
60
女
26
总计
100
(1)(i)将列联表补充完整;
(ii)据此列联表判断,能否有的把握认为“日平均走步数和性别是否有关”?
(2)将频率视作概率,从该公司的所有人“运动达人”中任意抽取3个用户,求抽取的用户中女用户人数的分布列及期望.
附:
22.(10分)如图,在平面直角坐标系中,以轴正半轴为始边的锐角的终边与单位圆交于点,且点的纵坐标是.
(1)求的值:
(2)若以轴正半轴为始边的钝角的终边与单位圆交于点,且点的横坐标为,求的值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.D
【解析】
求的展开式中的常数项,可转化为求展开式中的常数项和项,再求和即可得出答案.
【详解】
由题意,中常数项为,
中项为,
所以的展开式中的常数项为:
.
故选:D
本题主要考查二项式定理的应用和二项式展开式的通项公式,考查学生计算能力,属于基础题.
2.D
【解析】
先判断函数的奇偶性可排除选项A,C,当时,可分析函数值为正,即可判断选项.
【详解】
,
,
即函数为偶函数,
故排除选项A,C,
当正数越来越小,趋近于0时,,
所以函数,故排除选项B,
故选:D
本题主要考查了函数的奇偶性,识别函数的图象,属于中档题.
3.B
【解析】
根据题意表示出各位上的数字所对应的算筹即可得答案.
【详解】
解:根据题意可得,各个数码的筹式需要纵横相间,个位,百位,万位用纵式表示;十位,千位,十万位用横式表示,
用算筹表示应为:纵5横6纵8横4纵6,从题目中所给出的信息找出对应算筹表示为中的.
故选:.
本题主要考查学生的合情推理与演绎推理,属于基础题.
4.D
【解析】
先计算,然后将进行平方,,可得结果.
【详解】
由题意可得:
∴
∴则.
故选:D.
本题考查的是向量的数量积的运算和模的计算,属基础题。
5.B
【解析】
根据所给不等式组,画出不等式表示的可行域,将目标函数化为直线方程,平移后即可确定取值范围.
【详解】
实数满足的约束条件,画出可行域如下图所示:
将线性目标函数化为,
则将平移,平移后结合图像可知,当经过原点时截距最小,;
当经过时,截距最大值,,
所以线性目标函数的取值范围为,
故选:B.
本题考查了线性规划的简单应用,线性目标函数取值范围的求法,属于基础题.
6.D
【解析】
做出满足条件的可行域,根据图形即可求解.
【详解】
做出满足的可行域,如下图阴影部分,
根据图象,当目标函数过点时,取得最小值,
由,解得,即,
所以的最小值为.
故选:D.
本题考查二元一次不等式组表示平面区域,利用数形结合求线性目标函数的最值,属于基础题.
7.C
【解析】
如图所示:作垂直于准线交准线于,则,故,得到答案.
【详解】
如图所示:作垂直于准线交准线于,则,
在中,,故,即.
故选:.
本题考查了抛物线中角度的计算,意在考查学生的计算能力和转化能力.
8.A
【解析】
由复数的除法运算可整理得到,由此得到对应的点的坐标,从而确定所处象限.
【详解】
由得:,
对应的点的坐标为,位于第一象限.
故选:.
本题考查复数对应的点所在象限的求解,涉及到复数的除法运算,属于基础题.
9.D
【解析】
由题得对恒成立,令,然后分别求出即可得的取值范围.
【详解】
由题得对恒成立,
令,
在单调递减,且,
在上单调递增,在上单调递减,
,
又在单调递增,,
的取值范围为.
故选:D
本题主要考查了不等式恒成立问题,导数的综合应用,考查了转化与化归的思想.求解不等式恒成立问题,可采用参变量分离法去求解.
10.D
【解析】
试题分析:如图所示,截去部分是正方体的一个角,其体积是正方体体积的,剩余部分体积是正方体体积的,所以截去部分体积与剩余部分体积的比值为,故选D.
考点:本题主要考查三视图及几何体体积的计算.
11.C
【解析】
先将甲、乙两人看作一个整体,当作一个元素,再将这四个元素分成3个部分,每一个部分至少一个,再将这3部分分配到3个不同的路口,根据分步计数原理可得选项.
【详解】
把甲、乙两名交警看作一个整体,个人变成了4个元素,再把这4个元素分成3部分,每部分至少有1个人,共有种方法,再把这3部分分到3个不同的路口,有种方法,由分步计数原理,共有种方案。
故选:C.
本题主要考查排列与组合,常常运用捆绑法,插空法,先分组后分配等一些基本思想和方法解决问题,属于中档题.
12.B
【解析】
利用复数乘法运算化简,由此求得.
【详解】
依题意,所以.
故选:B
本小题主要考查复数的乘法运算,考查复数模的计算,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13.9
【解析】
用换中的n,得,作差可得,从而数列是等比数列,再由即可得到答案.
【详解】
由,得,两式相减,得,
即;又,解得,所以数列为首项为-3、
公比为3的等比数列,所以.
故答案为:9.
本题考查已知与的关系求数列通项的问题,要注意n的范围,考查学生运算求解能力,是一道中档题.
14.2
【解析】
根据递推公式可考虑分析,再累加求出关于关于参数的关系,根据表达式的取值分析出,再用数学归纳法证明满足条件即可.
【详解】
因为,
累加可得.
若,注意到当时,,不满足对任意的正整数均有.
所以.
当时,证明:对任意的正整数都有.
当时, 成立.
假设当时结论成立,即,
则,即结论对也成立.
由数学归纳法可知,对任意的正整数都有.
综上可知,所求实数的最大值是2.
故答案为:2
本题主要考查了根据数列的递推公式求解参数最值的问题,需要根据递推公式累加求解,同时注意结合参数的范围问题进行分析.属于难题.
15.
【解析】
先由解析式求得(2),再求(2).
【详解】
(2),,
所以(2),
故答案为:
本题考查对数、指数的运算性质,分段函数求值关键是“对号入座”,属于容易题.
16.
【解析】
三视图还原如下图:,由于每个面是直角,显然外接球球心O在AC的中点.所以,,填。
【点睛】三视图还原,当出现三个尖点在一个位置时,我们常用“揪尖法”。外接球球心到各个顶点的距离相等,而直角三角形斜边上的中点到各顶点的距离相等,所以本题的球心为AC中点。
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(1);(2)
【解析】
(1)分类讨论去绝对值号,即可求解;
(2)原不等式可转化为在R上恒成立,分别求函数与的最小值,根据能同时成立,可得的最小值,即可求解.
【详解】
(1)①当时,不等式可化为,得,无解;
②当-2≤x≤1时,不等式可化为得x>0,故0<x≤1;
③当x>1时,不等式可化为,得x<2,故1<x< 2.
综上,不等式的解集为
(2)由题意知在R上恒成立,
所以
令,则当时,
又当时,取得最小值,且
又
所以当时,与同时取得最小值.
所以
所以,
即实数的取值范围为
本题主要考查了含绝对值不等式的解法,分类讨论,函数的最值,属于中档题.
18.(1);(2)m-n-1=0
【解析】
试题分析:(1)利用M与短轴端点构成等腰直角三角形,可求得b的值,进而得到椭圆方程;(2)设出过M的直线l的方程,将l与椭圆C联立,得到两交点坐标关系,然后将k1+k3表示为直线l斜率的关系式,化简后得k1+k3=2,于是可得m,n的关系式.
试题解析:(1)由题意,c=,b=1,所以a=
故椭圆C的方程为
(2)①当直线l的斜率不存在时,方程为x=1,代入椭圆得,y=±
不妨设A(1,),B(1,-)
因为k1+k3==2
又k1+k3=2k2,所以k2=1
所以m,n的关系式为=1,即m-n-1=0
②当直线l的斜率存在时,设l的方程为y=k(x-1)
将y=k(x-1)代入,
整理得:(3k2+1)x2-6k2x+3k2-3=0
设A(x1,y1),B(x2,y2),则
又y1=k(x1-1),y2=k(x2-1)
所以k1+k3=
=
=
=
==2
所以2k2=2,所以k2==1
所以m,n的关系式为m-n-1=0
综上所述,m,n的关系式为m-n-1=0.
考点:椭圆标准方程,直线与椭圆位置关系,
19.(1)(2)2
【解析】
(1)先求得切点坐标,利用导数求得切线的斜率,由此求得切线方程.
(2)对分成,两种情况进行分类讨论.当时 ,将不等式转化为,构造函数,利用导数求得的最小值(设为)的取值范围,由的得在上恒成立,结合一元二次不等式恒成立,判别式小于零列不等式,解不等式求得的取值范围.
【详解】
(1)已知函数,则处即为,
又,,
可知函数过点的切线为,即.
(2)注意到,
不等式中,
当时,显然成立;
当时,不等式可化为
令,则,
,
所以存在,
使.
由于在上递增,在上递减,所以是的唯一零点.
且在区间上,递减,在区间上,递增,
即的最小值为,令,
则,将的最小值设为,则,
因此原式需满足,即在上恒成立,
又,可知判别式即可,即,且
可以取到的最大整数为2.
本小题主要考查利用导数求切线方程,考查利用导数研究不等式恒成立问题,考查化归与转化的数学思想方法,属于难题.
20.(1);(2)1.
【解析】
(1)利用参数方程、普通方程、极坐标方程间的互化公式即可;
(2),,由(1)通过计算得到,即最大值为1.
【详解】
(1)将曲线C的参数方程化为普通方程为,
即;
再将,,代入上式,
得,
故曲线C的极坐标方程为,
显然直线l与曲线C相交的两点中,
必有一个为原点O,不妨设O与A重合,
即.
(2)不妨设,,
则面积为
当,即取时,.
本题考查参数方程、普通方程、极坐标方程间的互化,三角形面积的最值问题,是一道容易题.
21.(1)(i)填表见解析(ii)没有的把握认为“日平均走步数和性别是否有关”(2)详见解析
【解析】
(1)(i)由已给数据可完成列联表,(ii)计算出后可得;
(2)由列联表知从运动达人中抽取1个用户为女用户的概率为,的取值为,,由二项分布概率公式计算出各概率得分布列,由期望公式计算期望.
【详解】
解(1)(i)
运动达人
非运动达人
总计
男
35
25
60
女
14
26
40
总计
49
51
100
(ii)由列联表得
所以没有的把握认为“日平均走步数和性别是否有关”
(2)由列联表知从运动达人中抽取1个用户为女用户的概率为,.
易知
所以的分布列为
0
1
2
3
.
本题考查列联表,考查独立性检验,考查随机变量的概率分布列和期望.属于中档题.本题难点在于认识到.
22.(1)(2)
【解析】
(1)依题意,任意角的三角函数的定义可知,,进而求出.
在利用余弦的和差公式即可求出.
(2)根据钝角的终边与单位圆交于点,且点的横坐标是,得出,进而得出,利用正弦的和差公式即可求出,结合为锐角,为钝角,即可得出的值.
【详解】
解:因为锐角的终边与单位圆交于点,点的纵坐标是,
所以由任意角的三角函数的定义可知,.
从而.
(1)于是
.
(2)因为钝角的终边与单位圆交于点,且点的横坐标是,
所以,从而.
于是
.
因为为锐角,为钝角,所以
从而.
本题本题考查正弦函数余弦函数的定义,考查正弦余弦的两角和差公式,是基础题.
展开阅读全文