资源描述
2025-2026学年锦州市重点中学数学高三第一学期期末检测模拟试题
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,则( )
A. B.
C. D.
2.函数的图像大致为( )
A. B.
C. D.
3.在中,内角A,B,C所对的边分别为a,b,c,D是AB的中点,若,且,则面积的最大值是( )
A. B. C. D.
4.下列选项中,说法正确的是( )
A.“”的否定是“”
B.若向量满足 ,则与的夹角为钝角
C.若,则
D.“”是“”的必要条件
5.函数(其中,,)的图象如图,则此函数表达式为( )
A. B.
C. D.
6.一个几何体的三视图如图所示,则该几何体的表面积为( )
A. B. C. D.84
7.德国数学家莱布尼兹(1646年-1716年)于1674年得到了第一个关于π的级数展开式,该公式于明朝初年传入我国.在我国科技水平业已落后的情况下,我国数学家、天文学家明安图(1692年-1765年)为提高我国的数学研究水平,从乾隆初年(1736年)开始,历时近30年,证明了包括这个公式在内的三个公式,同时求得了展开三角函数和反三角函数的6个新级数公式,著有《割圆密率捷法》一书,为我国用级数计算π开创了先河.如图所示的程序框图可以用莱布尼兹“关于π的级数展开式”计算π的近似值(其中P表示π的近似值),若输入,则输出的结果是( )
A. B.
C. D.
8.等差数列中,,,则数列前6项和为()
A.18 B.24 C.36 D.72
9.若(是虚数单位),则的值为( )
A.3 B.5 C. D.
10.设平面与平面相交于直线,直线在平面内,直线在平面内,且则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.即不充分不必要条件
11.已知三棱锥的四个顶点都在球的球面上,平面,是边长为的等边三角形,若球的表面积为,则直线与平面所成角的正切值为( )
A. B. C. D.
12.设函数,则,的大致图象大致是的( )
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.若,则__________.
14.已知四棱锥的底面ABCD是边长为2的正方形,且.若四棱锥P-ABCD的五个顶点在以4为半径的同一球面上,当PA最长时,则______________;四棱锥P-ABCD的体积为______________.
15.如图,在平行四边形中,,,则的值为_____.
16.在如图所示的三角形数阵中,用表示第行第个数,已知,且当时,每行中的其他各数均等于其“肩膀”上的两个数之和,即,若,则正整数的最小值为______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,在四棱锥中,侧棱底面,,,,,是棱中点.
(1)已知点在棱上,且平面平面,试确定点的位置并说明理由;
(2)设点是线段上的动点,当点在何处时,直线与平面所成角最大?并求最大角的正弦值.
18.(12分)设函数.
(1)当时,求不等式的解集;
(2)当时,求实数的取值范围.
19.(12分)已知函数.
(1)求证:当时,;
(2)若对任意存在和使成立,求实数的最小值.
20.(12分)已知函数
(1)若,试讨论的单调性;
(2)若,实数为方程的两不等实根,求证:.
21.(12分)在平面直角坐标系中,已知椭圆的左、右顶点分别为、,焦距为2,直线与椭圆交于两点(均异于椭圆的左、右顶点).当直线过椭圆的右焦点且垂直于轴时,四边形的面积为6.
(1)求椭圆的标准方程;
(2)设直线的斜率分别为.
①若,求证:直线过定点;
②若直线过椭圆的右焦点,试判断是否为定值,并说明理由.
22.(10分)已知函数,
(1)若,求的单调区间和极值;
(2)设,且有两个极值点,,若,求的最小值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.C
【解析】
由题意和交集的运算直接求出.
【详解】
∵ 集合,
∴.
故选:C.
本题考查了集合的交集运算.集合进行交并补运算时,常借助数轴求解.注意端点处是实心圆还是空心圆.
2.A
【解析】
根据排除,,利用极限思想进行排除即可.
【详解】
解:函数的定义域为,恒成立,排除,,
当时,,当,,排除,
故选:.
本题主要考查函数图象的识别和判断,利用函数值的符号以及极限思想是解决本题的关键,属于基础题.
3.A
【解析】
根据正弦定理可得,求出,根据平方关系求出.由两端平方,求的最大值,根据三角形面积公式,求出面积的最大值.
【详解】
中,,
由正弦定理可得,整理得,
由余弦定理,得.
D是AB的中点,且,
,即,
即,
,当且仅当时,等号成立.
的面积,
所以面积的最大值为.
故选:.
本题考查正、余弦定理、不等式、三角形面积公式和向量的数量积运算,属于中档题.
4.D
【解析】
对于A根据命题的否定可得:“∃x0∈R,x02-x0≤0”的否定是“∀x∈R,x2-x>0”,即可判断出;对于B若向量满足,则与的夹角为钝角或平角;对于C当m=0时,满足am2≤bm2,但是a≤b不一定成立;对于D根据元素与集合的关系即可做出判断.
【详解】
选项A根据命题的否定可得:“∃x0∈R,x02-x0≤0”的否定是“∀x∈R,x2-x>0”,因此A不正确;
选项B若向量满足,则与的夹角为钝角或平角,因此不正确.
选项C当m=0时,满足am2≤bm2,但是a≤b不一定成立,因此不正确;
选项D若“”,则且,所以一定可以推出“”,因此“”是“”的必要条件,故正确.
故选:D.
本题考查命题的真假判断与应用,涉及知识点有含有量词的命题的否定、不等式性质、向量夹角与性质、集合性质等,属于简单题.
5.B
【解析】
由图象的顶点坐标求出,由周期求出,通过图象经过点,求出,从而得出函数解析式.
【详解】
解:由图象知,,则,
图中的点应对应正弦曲线中的点,
所以,解得,
故函数表达式为.
故选:B.
本题主要考查三角函数图象及性质,三角函数的解析式等基础知识;考查考生的化归与转化思想,数形结合思想,属于基础题.
6.B
【解析】
画出几何体的直观图,计算表面积得到答案.
【详解】
该几何体的直观图如图所示:
故.
故选:.
本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力.
7.B
【解析】
执行给定的程序框图,输入,逐次循环,找到计算的规律,即可求解.
【详解】
由题意,执行给定的程序框图,输入,可得:
第1次循环:;
第2次循环:;
第3次循环:;
第10次循环:,
此时满足判定条件,输出结果,
故选:B.
本题主要考查了循环结构的程序框图的计算与输出,其中解答中认真审题,逐次计算,得到程序框图的计算功能是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.
8.C
【解析】
由等差数列的性质可得,根据等差数列的前项和公式可得结果.
【详解】
∵等差数列中,,∴,即,
∴,
故选C.
本题主要考查了等差数列的性质以及等差数列的前项和公式的应用,属于基础题.
9.D
【解析】
直接利用复数的模的求法的运算法则求解即可.
【详解】
(是虚数单位)
可得
解得
本题正确选项:
本题考查复数的模的运算法则的应用,复数的模的求法,考查计算能力.
10.A
【解析】
试题分析:α⊥β, b⊥m又直线a在平面α内,所以a⊥b,但直线不一定相交,所以“α⊥β”是“a⊥b”的充分不必要条件,故选A.
考点:充分条件、必要条件.
11.C
【解析】
设为中点,先证明平面,得出为所求角,利用勾股定理计算,得出结论.
【详解】
设分别是的中点
平面
是等边三角形
又
平面 为与平面所成的角
是边长为的等边三角形
,且为所在截面圆的圆心
球的表面积为 球的半径
平面
本题正确选项:
本题考查了棱锥与外接球的位置关系问题,关键是能够通过垂直关系得到直线与平面所求角,再利用球心位置来求解出线段长,属于中档题.
12.B
【解析】
采用排除法:通过判断函数的奇偶性排除选项A;通过判断特殊点的函数值符号排除选项D和选项C即可求解.
【详解】
对于选项A:由题意知,函数的定义域为,其关于原点对称,
因为,
所以函数为奇函数,其图象关于原点对称,故选A排除;
对于选项D:因为,故选项D排除;
对于选项C:因为,故选项C排除;
故选:B
本题考查利用函数的奇偶性和特殊点函数值符号判断函数图象;考查运算求解能力和逻辑推理能力;选取合适的特殊点并判断其函数值符号是求解本题的关键;属于中档题、常考题型.
二、填空题:本题共4小题,每小题5分,共20分。
13.
【解析】
由已知利用两角差的正弦函数公式可得,两边平方,由同角三角函数基本关系式,二倍角的正弦函数公式即可计算得解.
【详解】
,得,
在等式两边平方得,解得.
故答案为:.
本题主要考查了两角差的正弦函数公式,同角三角函数基本关系式,二倍角的正弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.
14.90°
【解析】
易得平面PAD,P点在与BA垂直的圆面内运动,显然,PA是圆的直径时,PA最长;将四棱锥补形为长方体,易得为球的直径即可得到PD,从而求得四棱锥的体积.
【详解】
如图,由及,得平面PAD,
即P点在与BA垂直的圆面内运动,
易知,当P、、A三点共线时,PA达到最长,
此时,PA是圆的直径,则;
又,所以平面ABCD,
此时可将四棱锥补形为长方体,
其体对角线为,底面边长为2的正方形,
易求出,高,
故四棱锥体积.
故答案为: (1) 90° ; (2) .
本题四棱锥外接球有关的问题,考查学生空间想象与逻辑推理能力,是一道有难度的压轴填空题.
15.
【解析】
根据ABCD是平行四边形可得出,然后代入AB=2,AD=1即可求出的值.
【详解】
∵AB=2,AD=1,
∴
=1﹣4
=﹣1.
故答案为:﹣1.
本题考查了向量加法的平行四边形法则,相等向量和相反向量的定义,向量数量积的运算,考查了计算能力,属于基础题.
16.2022
【解析】
根据条件先求出数列的通项,利用累加法进行求解即可.
【详解】
,,,
下面求数列的通项,
由题意知,,,
,,
,
数列是递增数列,且,
的最小值为.
故答案为:.
本题主要考查归纳推理的应用,结合数列的性质求出数列的通项是解决本题的关键.综合性较强,属于难题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(1)为中点,理由见解析;(2)当点在线段靠近的三等分点时,直线与平面所成角最大,最大角的正弦值.
【解析】
(1)为中点,可利用中位线与平行四边形性质证明,,从而证明平面平面;
(2)以A为原点,分别以,,所在直线为、、轴建立空间直角坐标系,利用向量法求出当点在线段靠近的三等分点时,直线与平面所成角最大,并可求出最大角的正弦值.
【详解】
(1)为中点,证明如下:
分别为中点,
又平面平面
平面
又,且四边形为平行四边形,
同理,平面,又
平面平面
(2)以A为原点,分别以,,所在直线为、、轴建立空间直角坐标系
则,
设直线与平面所成角为,则
取平面的法向量为则
令,则
所以
当时,等号成立
即当点在线段靠近的三等分点时,直线与平面所成角最大,最大角的正弦值.
本题主要考查了平面与平面的平行,直线与平面所成角的求解,考查了学生的直观想象与运算求解能力.
18. (1) (2) 当时,的取值范围为;当时,的取值范围为.
【解析】
(1)当时,分类讨论把不等式化为等价不等式组,即可求解.
(2)由绝对值的三角不等式,可得,当且仅当时,取“”,分类讨论,即可求解.
【详解】
(1)当时,,
不等式可化为或或 ,
解得不等式的解集为.
(2)由绝对值的三角不等式,可得,
当且仅当时,取“”,
所以当时,的取值范围为;当时,的取值范围为.
本题主要考查了含绝对值的不等式的求解,以及绝对值三角不等式的应用,其中解答中熟记含绝对值不等式的解法,以及合理应用绝对值的三角不等式是解答的关键,着重考查了推理与运算能力,属于基础题.
19.(1)见解析;(2)
【解析】
(1)不等式等价于,设,利用导数可证恒成立,从而原不等式成立.
(2)由题设条件可得在上有两个不同零点,且,利用导数讨论的单调性后可得其最小值,结合前述的集合的包含关系可得的取值范围.
【详解】
(1)设,则,
当时,由,所以在上是减函数,
所以,故.
因为,所以,所以当时,.
(2)由(1)当时,;
任意,存在和使成立,
所以在上有两个不同零点,且,
(1)当时,在上为减函数,不合题意;
(2)当时,,
由题意知在上不单调,
所以,即,
当时,,时,,
所以在上递减,在上递增,
所以,解得,
因为,所以成立,
下面证明存在,使得,
取,先证明,即证,
令,则在时恒成立,
所以成立,
因为,
所以时命题成立.
因为,所以.
故实数的最小值为.
本题考查导数在不等式恒成立、等式能成立中的应用,前者注意将欲证不等式合理变形,转化为容易证明的新不等式,后者需根据等式能成立的特点确定出函数应该具有的性质,再利用导数研究该性质,本题属于难题.
20.(1)答案不唯一,具体见解析(2)证明见解析
【解析】
(1)根据题意得,分与讨论即可得到函数的单调性;
(2)根据题意构造函数,得,参变分离得,
分析不等式,即转化为,设,再构造函数,利用导数得单调性,进而得证.
【详解】
(1)依题意,当时,,
①当时,恒成立,此时在定义域上单调递增;
②当时,若,;若,;
故此时的单调递增区间为,单调递减区间为.
(2)方法1:由得
令,则,
依题意有,即,
要证,只需证(不妨设),
即证,
令,设,则,
在单调递减,即,从而有.
方法2:由得
令,则,
当时,时,
故在上单调递增,在上单调递减,
不妨设,则,
要证,只需证,易知,
故只需证,即证
令,(),
则
==,
(也可代入后再求导)
在上单调递减,,
故对于时,总有.由此得
本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,属于难题.
21.(1);(2)①证明见解析;②
【解析】
(1)由题意焦距为2,设点,代入椭圆,解得,从而四边形的面积,由此能求出椭圆的标准方程.
(2)①由题意,联立直线与椭圆的方程,得,推导出,,,,由此猜想:直线过定点,从而能证明,,三点共线,直线过定点.
②由题意设,,,,直线,代入椭圆标准方程:,得,推导出,,由此推导出(定值).
【详解】
(1)由题意焦距为2,可设点,代入椭圆,
得,解得,
四边形的面积,
,,
椭圆的标准方程为.
(2)①由题意,
联立直线与椭圆的方程,得,
,解得,从而,
,,同理可得,,
猜想:直线过定点,下证之:
,
,
,,三点共线,直线过定点.
②为定值,理由如下:
由题意设,,,,直线,
代入椭圆标准方程:,得,
,
,,
(定值).
本题考查椭圆标准方程的求法,考查直线过定点的证明,考查两直线的斜率的比值是否为定值的判断与求法,考查椭圆、直线方程、韦达定理等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题.
22.(1)增区间为,减区间为; 极小值,无极大值;(2)
【解析】
(1)求出f(x)的导数,解不等式,即可得到函数的单调区间,进而得到函数的极值;
(2)由题意可得,,求出的表达式,,求出h(t)的最小值即可.
【详解】
(1)将代入中,得到,求导,
得到,结合,
当得到: 增区间为,当,得减区间为且在时有极小值,无极大值.
(2)将解析式代入,得,求导
得到,
令,得到,
,,
,
,
,
,
,
因为,所以设,令,
则所以在单调递减,又因为
所以,所以 或
又因为,所以 所以,
所以的最小值为.
本题考查了函数的单调性、极值、最值问题,考查导数的应用以及函数的极值的意义,考查转化思想与减元意识,是一道综合题.
展开阅读全文