资源描述
2025-2026学年安徽省利辛一中数学高三第一学期期末质量跟踪监视试题
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数f(x)=sin2x+sin2(x),则f(x)的最小值为( )
A. B. C. D.
2.若直线经过抛物线的焦点,则( )
A. B. C.2 D.
3.执行如图所示的程序框图,若输入,,则输出的( )
A.4 B.5 C.6 D.7
4.已知函数,则不等式的解集是( )
A. B. C. D.
5.下边程序框图的算法源于我国古代的中国剩余定理.把运算“正整数除以正整数所得的余数是”记为“”,例如.执行该程序框图,则输出的等于( )
A.16 B.17 C.18 D.19
6.已知 若在定义域上恒成立,则的取值范围是( )
A. B. C. D.
7.定义:表示不等式的解集中的整数解之和.若,,,则实数的取值范围是
A. B. C. D.
8.已知满足,则的取值范围为( )
A. B. C. D.
9.若各项均为正数的等比数列满足,则公比( )
A.1 B.2 C.3 D.4
10.已知平行于轴的直线分别交曲线于两点,则的最小值为( )
A. B. C. D.
11.已知圆与抛物线的准线相切,则的值为()
A.1 B.2 C. D.4
12.已知集合,,则( )
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.(5分)在长方体中,已知棱长,体对角线,两异面直线与所成的角为,则该长方体的表面积是____________.
14.已知函数,则函数的极大值为 ___________.
15.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为______.
16.已知向量,,若满足,且方向相同,则__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)若,且
(1)求的最小值;
(2)是否存在,使得?并说明理由.
18.(12分)已知椭圆的离心率为,直线过椭圆的右焦点,过的直线交椭圆于两点(均异于左、右顶点).
(1)求椭圆的方程;
(2)已知直线,为椭圆的右顶点. 若直线交于点,直线交于点,试判断是否为定值,若是,求出定值;若不是,说明理由.
19.(12分)已知函数,其中.
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)设,求证:;
(Ⅲ)若对于恒成立,求的最大值.
20.(12分)已知满足 ,且,求的值及的面积.(从①,②,③这三个条件中选一个,补充到上面问题中,并完成解答.)
21.(12分)在三棱锥中,是边长为的正三角形,平面平面,,M、N分别为、的中点.
(1)证明:;
(2)求三棱锥的体积.
22.(10分)已知直线的参数方程为(,为参数),曲线的极坐标方程为.
(1)将曲线的极坐标方程化为直角坐标方程,并说明曲线的形状;
(2)若直线经过点,求直线被曲线截得的线段的长.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A
【解析】
先通过降幂公式和辅助角法将函数转化为,再求最值.
【详解】
已知函数f(x)=sin2x+sin2(x),
=,
=,
因为,
所以f(x)的最小值为.
故选:A
本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题.
2.B
【解析】
计算抛物线的交点为,代入计算得到答案.
【详解】
可化为,焦点坐标为,故.
故选:.
本题考查了抛物线的焦点,属于简单题.
3.C
【解析】
根据程序框图程序运算即可得.
【详解】
依程序运算可得:
,
故选:C
本题主要考查了程序框图的计算,解题的关键是理解程序框图运行的过程.
4.B
【解析】
由导数确定函数的单调性,利用函数单调性解不等式即可.
【详解】
函数,可得,
时,,单调递增,
∵,
故不等式的解集等价于不等式的解集.
.
∴.
故选:B.
本题主要考查了利用导数判定函数的单调性,根据单调性解不等式,属于中档题.
5.B
【解析】
由已知中的程序框图可知,该程序的功能是利用循环结构计算并输出变量 的值,模拟程序的运行过程,代入四个选项进行验证即可.
【详解】
解:由程序框图可知,输出的数应为被3除余2,被5除余2的且大于10的最小整数.
若输出 ,则不符合题意,排除;
若输出,则,符合题意.
故选:B.
本题考查了程序框图.当循环的次数不多,或有规律时,常采用循环模拟或代入选项验证的方法进行解答.
6.C
【解析】
先解不等式,可得出,求出函数的值域,由题意可知,不等式在定义域上恒成立,可得出关于的不等式,即可解得实数的取值范围.
【详解】
,先解不等式.
①当时,由,得,解得,此时;
②当时,由,得.
所以,不等式的解集为.
下面来求函数的值域.
当时,,则,此时;
当时,,此时.
综上所述,函数的值域为,
由于在定义域上恒成立,
则不等式在定义域上恒成立,所以,,解得.
因此,实数的取值范围是.
故选:C.
本题考查利用函数不等式恒成立求参数,同时也考查了分段函数基本性质的应用,考查分类讨论思想的应用,属于中等题.
7.D
【解析】
由题意得,表示不等式的解集中整数解之和为6.
当时,数形结合(如图)得的解集中的整数解有无数多个,解集中的整数解之和一定大于6.
当时,,数形结合(如图),由解得.在内有3个整数解,为1,2,3,满足,所以符合题意.
当时,作出函数和的图象,如图所示.
若,即的整数解只有1,2,3.
只需满足,即,解得,所以.
综上,当时,实数的取值范围是.故选D.
8.C
【解析】
设,则的几何意义为点到点的斜率,利用数形结合即可得到结论.
【详解】
解:设,则的几何意义为点到点的斜率,
作出不等式组对应的平面区域如图:
由图可知当过点的直线平行于轴时,此时成立;
取所有负值都成立;
当过点时,取正值中的最小值,,此时;
故的取值范围为;
故选:C.
本题考查简单线性规划的非线性目标函数函数问题,解题时作出可行域,利用目标函数的几何意义求解是解题关键.对于直线斜率要注意斜率不存在的直线是否存在.
9.C
【解析】
由正项等比数列满足,即,又,即,运算即可得解.
【详解】
解:因为,所以,又,所以,
又,解得.
故选:C.
本题考查了等比数列基本量的求法,属基础题.
10.A
【解析】
设直线为,用表示出,,求出,令,利用导数求出单调区间和极小值、最小值,即可求出的最小值.
【详解】
解:设直线为,则,,
而满足,
那么
设,则,函数在上单调递减,在上单调递增,
所以
故选:.
本题考查导数知识的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导确定函数的最小值是关键,属于中档题.
11.B
【解析】
因为圆与抛物线的准线相切,则圆心为(3,0),半径为4,根据相切可知,圆心到直线的距离等于 半径,可知的值为2,选B.
【详解】
请在此输入详解!
12.A
【解析】
根据对数性质可知,再根据集合的交集运算即可求解.
【详解】
∵,
集合,
∴由交集运算可得.
故选:A.
本题考查由对数的性质比较大小,集合交集的简单运算,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13.10
【解析】
作出长方体如图所示,由于,则就是异面直线与所成的角,且,在等腰直角三角形中,由,得,又,则,从而长方体的表面积为.
14.
【解析】
对函数求导,通过赋值,求得,再对函数单调性进行分析,求得极大值.
【详解】
,故
解得, ,
令,解得
函数在单调递增,在单调递减,
故的极大值为
故答案为:.
本题考查函数极值的求解,难点是要通过赋值,求出未知量.
15.
【解析】
设圆柱的轴截面的边长为x,可求得,代入圆柱的表面积公式,即得解
【详解】
设圆柱的轴截面的边长为x,
则由,得,
∴.
故答案为:
本题考查了圆柱的轴截面和表面积,考查了学生空间想象,转化划归,数学运算的能力,属于基础题.
16.
【解析】
由向量平行坐标表示计算.注意验证两向量方向是否相同.
【详解】
∵,∴,解得或,
时,满足题意,
时,,方向相反,不合题意,舍去.
∴.
故答案为:1.
本题考查向量平行的坐标运算,解题时要注意验证方向相同这个条件,否则会出错.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(1);(2)不存在.
【解析】
(1)由已知,利用基本不等式的和积转化可求,利用基本不等式可将转化为,由不等式的传递性,可求的最小值;(2)由基本不等式可求的最小值为,而,故不存在.
【详解】
(1)由,得,且当时取等号.
故,且当时取等号.
所以的最小值为;
(2)由(1)知,.
由于,从而不存在,使得成立.
【考点定位】
基本不等式.
18.(1)(2)定值为0.
【解析】
(1)根据直线方程求焦点坐标,即得c,再根据离心率得,(2)先设直线方程以及各点坐标,化简,再联立直线方程与椭圆方程,利用韦达定理代入化简得结果.
【详解】
(1)因为直线过椭圆的右焦点,所以,
因为离心率为,所以,
(2),设直线,
则
因此
由得,
所以,
因此
即
本题考查椭圆方程以及直线与椭圆位置关系,考查综合分析求解能力,属中档题.
19.(Ⅰ)函数的单调增区间为,单调减区间为;(Ⅱ)证明见解析;(Ⅲ).
【解析】
(Ⅰ)利用二次求导可得,所以在上为增函数,进而可得函数的单调增区间为,单调减区间为;(Ⅱ)利用导数可得在区间上存在唯一零点,所以函数在递减,在,递增,则,进而可证;(Ⅲ)条件等价于对于恒成立,构造函数,利用导数可得的单调性,即可得到的最小值为,再次构造函数(a),,利用导数得其单调区间,进而求得最大值.
【详解】
(Ⅰ)当时,,
则,所以,
又因为,所以在上为增函数,
因为,所以当时,,为增函数,
当时,,为减函数,
即函数的单调增区间为,单调减区间为;
(Ⅱ),
则令,则(1),,
所以在区间上存在唯一零点,
设零点为,则,且,
当时,,当,,,
所以函数在递减,在,递增,
,
由,得,所以,
由于,,从而;
(Ⅲ)因为对于恒成立,即对于恒成立,
不妨令,
因为,,
所以的解为,
则当时,,为增函数,
当时,,为减函数,
所以的最小值为,
则,
不妨令(a),,
则(a),解得,
所以当时,(a),(a)为增函数,
当时,(a),(a)为减函数,
所以(a)的最大值为,
则的最大值为.
本题考查利用导数研究函数的单调性和最值,以及函数不等式恒成立问题的解法,意在考查学生等价转化思想和数学运算能力,属于较难题.
20.见解析
【解析】
选择①时:,,计算,根据正弦定理得到,计算面积得到答案;选择②时,,,故,为钝角,故无解;选择③时,,根据正弦定理解得,,根据正弦定理得到,计算面积得到答案.
【详解】
选择①时:,,故.
根据正弦定理:,故,故.
选择②时,,,故,为钝角,故无解.
选择③时,,根据正弦定理:,故,
解得,.
根据正弦定理:,故,故.
本题考查了三角恒等变换,正弦定理,面积公式,意在考查学生的计算能力和综合应用能力.
21.(1)证明见解析;(2).
【解析】
(1)取 中点,连接,,证明平面,由线面垂直的性质可得;
(2)由,即可求得三棱锥的体积.
【详解】
解:(1)证明:取中点D,连接,.
因为,,所以且,
因为,平面,平面,所以平面.
又平面,所以;
(2)解:因为平面,平面,所以平面平面,
过N作于E,则平面,
因为平面平面,,平面平面,平面,所以平面,
又因为平面,所以,
由于,所以
所以,
所以.
本题考查线面垂直,考查三棱锥体积的计算,解题的关键是掌握线面垂直的判定与性质,属于中档题.
22. (1) 曲线表示的是焦点为,准线为的抛物线;(2)8.
【解析】
试题分析:(1)将曲线的极坐标方程为两边同时乘以,利用极坐标与直角坐标之间的关系即可得出其直角坐标方程;(2)由直线经过点,可得的值,再将直线的参数方程代入曲线的标准方程,由直线参数方程的几何意义可得直线被曲线截得的线段的长.
试题解析:(1)由可得,即,
∴ 曲线表示的是焦点为,准线为的抛物线.
(2)将代入,得,∴ ,
∵ ,∴ ,∴直线的参数方程为 (为参数).
将直线的参数方程代入得,
由直线参数方程的几何意义可知,
.
展开阅读全文