资源描述
2025年郴州市重点中学数学高三上期末质量检测试题
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集,集合,,则集合( )
A. B. C. D.
2.若x∈(0,1),a=lnx,b=,c=elnx,则a,b,c的大小关系为( )
A.b>c>a B.c>b>a C.a>b>c D.b>a>c
3.对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析.
①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分;
②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内;
③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关;
④乙同学连续九次测验成绩每一次均有明显进步.
其中正确的个数为( )
A. B. C. D.
4.集合的子集的个数是( )
A.2 B.3 C.4 D.8
5.在函数:①;②;③;④中,最小正周期为的所有函数为( )
A.①②③ B.①③④ C.②④ D.①③
6.设复数满足,在复平面内对应的点为,则( )
A. B. C. D.
7.设全集,集合,,则( )
A. B. C. D.
8.中国铁路总公司相关负责人表示,到2018年底,全国铁路营业里程达到13.1万公里,其中高铁营业里程2.9万公里,超过世界高铁总里程的三分之二,下图是2014年到2018年铁路和高铁运营里程(单位:万公里)的折线图,以下结论不正确的是( )
A.每相邻两年相比较,2014年到2015年铁路运营里程增加最显著
B.从2014年到2018年这5年,高铁运营里程与年价正相关
C.2018年高铁运营里程比2014年高铁运营里程增长80%以上
D.从2014年到2018年这5年,高铁运营里程数依次成等差数列
9.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( )
A. B. C. D.
10.在中,角的对边分别为,,若,,且,则的面积为( )
A. B. C. D.
11.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是( )
A.丙被录用了 B.乙被录用了 C.甲被录用了 D.无法确定谁被录用了
12.执行如图所示的程序框图,若输出的值为8,则框图中①处可以填( ).
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知(且)有最小值,且最小值不小于1,则的取值范围为__________.
14.已知, 是互相垂直的单位向量,若 与λ的夹角为60°,则实数λ的值是__.
15.已知、为正实数,直线截圆所得的弦长为,则的最小值为__________.
16.从甲、乙等8名志愿者中选5人参加周一到周五的社区服务,每天安排一人,每人只参加一天.若要求甲、乙两人至少选一人参加,且当甲、乙两人都参加时,他们参加社区服务的日期不相邻,那么不同的安排种数
为______________.(用数字作答)
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数,.
(1)当时,
①求函数在点处的切线方程;
②比较与的大小;
(2)当时,若对时,,且有唯一零点,证明:.
18.(12分)如图,四棱锥中,底面为直角梯形,∥,为等边三角形,平面底面,为的中点.
(1)求证:平面平面;
(2)点在线段上,且,求平面与平面所成的锐二面角的余弦值.
19.(12分)选修4-5:不等式选讲
已知函数
(Ⅰ)解不等式;
(Ⅱ)对及,不等式恒成立,求实数的取值范围.
20.(12分)在平面直角坐标系中,已知直线(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的直角坐标方程;
(2)设点的极坐标为,直线与曲线的交点为,求的值.
21.(12分)高铁和航空的飞速发展不仅方便了人们的出行,更带动了我国经济的巨大发展.据统 计,在2018年这一年内从 市到市乘坐高铁或飞机出行的成年人约为万人次.为了 解乘客出行的满意度,现从中随机抽取人次作为样本,得到下表(单位:人次):
满意度
老年人
中年人
青年人
乘坐高铁
乘坐飞机
乘坐高铁
乘坐飞机
乘坐高铁
乘坐飞机
10分(满意)
12
1
20
2
20
1
5分(一般)
2
3
6
2
4
9
0分(不满意)
1
0
6
3
4
4
(1)在样本中任取个,求这个出行人恰好不是青年人的概率;
(2)在2018年从市到市乘坐高铁的所有成年人中,随机选取人次,记其中老年人出行的人次为.以频率作为概率,求的分布列和数学期望;
(3)如果甲将要从市出发到市,那么根据表格中的数据,你建议甲是乘坐高铁还是飞机? 并说明理由.
22.(10分)已知函数.
(1)当时,求曲线在点处的切线方程;
(2)若在上恒成立,求的取值范围.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.C
【解析】
∵集合,,
∴
点睛:本题是道易错题,看清所问问题求并集而不是交集.
2.A
【解析】
利用指数函数、对数函数的单调性直接求解.
【详解】
∵x∈(0,1),
∴a=lnx<0,
b=()lnx>()0=1,
0<c=elnx<e0=1,
∴a,b,c的大小关系为b>c>a.
故选:A.
本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.
3.C
【解析】
利用图形,判断折线图平均分以及线性相关性,成绩的比较,说明正误即可.
【详解】
①甲同学的成绩折线图具有较好的对称性,最高分,平均成绩为低于分,①错误;
②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内,②正确;
③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关,③正确;
④乙同学在这连续九次测验中第四次、第七次成绩较上一次成绩有退步,故④不正确.
故选:C.
本题考查折线图的应用,线性相关以及平均分的求解,考查转化思想以及计算能力,属于基础题.
4.D
【解析】
先确定集合中元素的个数,再得子集个数.
【详解】
由题意,有三个元素,其子集有8个.
故选:D.
本题考查子集的个数问题,含有个元素的集合其子集有个,其中真子集有个.
5.A
【解析】
逐一考查所给的函数:
,该函数为偶函数,周期 ;
将函数 图象x轴下方的图象向上翻折即可得到 的图象,该函数的周期为 ;
函数的最小正周期为 ;
函数的最小正周期为 ;
综上可得最小正周期为的所有函数为①②③.
本题选择A选项.
点睛:求三角函数式的最小正周期时,要尽可能地化为只含一个三角函数的式子,否则很容易出现错误.一般地,经过恒等变形成“y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)”的形式,再利用周期公式即可.
6.B
【解析】
设,根据复数的几何意义得到、的关系式,即可得解;
【详解】
解:设
∵,∴,解得.
故选:B
本题考查复数的几何意义的应用,属于基础题.
7.B
【解析】
可解出集合,然后进行补集、交集的运算即可.
【详解】
,,则,因此,.
故选:B.
本题考查补集和交集的运算,涉及一元二次不等式的求解,考查运算求解能力,属于基础题.
8.D
【解析】
由折线图逐项分析即可求解
【详解】
选项,显然正确;
对于,,选项正确;
1.6,1.9,2.2,2.5,2.9不是等差数列,故错.
故选:D
本题考查统计的知识,考查数据处理能力和应用意识,是基础题
9.B
【解析】
因为时针经过2小时相当于转了一圈的,且按顺时针转所形成的角为负角,综合以上即可得到本题答案.
【详解】
因为时针旋转一周为12小时,转过的角度为,按顺时针转所形成的角为负角,所以经过2小时,时针所转过的弧度数为.
故选:B
本题主要考查正负角的定义以及弧度制,属于基础题.
10.C
【解析】
由,可得,化简利用余弦定理可得,解得.即可得出三角形面积.
【详解】
解:,,且,
,化为:.
,解得.
.
故选:.
本题考查了向量共线定理、余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.
11.C
【解析】
假设若甲被录用了,若乙被录用了,若丙被录用了,再逐一判断即可.
【详解】
解:若甲被录用了,则甲的说法错误,乙,丙的说法正确,满足题意,
若乙被录用了,则甲、乙的说法错误,丙的说法正确,不符合题意,
若丙被录用了,则乙、丙的说法错误,甲的说法正确,不符合题意,
综上可得甲被录用了,
故选:C.
本题考查了逻辑推理能力,属基础题.
12.C
【解析】
根据程序框图写出几次循环的结果,直到输出结果是8时.
【详解】
第一次循环:
第二次循环:
第三次循环:
第四次循环:
第五次循环:
第六次循环:
第七次循环:
第八次循环:
所以框图中①处填时,满足输出的值为8.
故选:C
此题考查算法程序框图,根据循环条件依次写出每次循环结果即可解决,属于简单题目.
二、填空题:本题共4小题,每小题5分,共20分。
13.
【解析】
真数有最小值,根据已知可得的范围,求出函数的最小值,建立关于的不等量关系,求解即可.
【详解】
,且(且)有最小值,
,
的取值范围为.
故答案为:.
本题考查对数型复合函数的性质,熟练掌握基本初等函数的性质是解题关键,属于基础题.
14.
【解析】
根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出λ的值.
【详解】
解:由题意,设(1,0),(0,1),
则(,﹣1),
λ(1,λ);
又夹角为60°,
∴()•(λ)λ=2cos60°,
即λ,
解得λ.
本题考查了单位向量和平面向量数量积的运算问题,是中档题.
15.
【解析】
先根据弦长,半径,弦心距之间的关系列式求得,代入整理得,利用基本不等式求得最值.
【详解】
解:圆的圆心为,
则到直线的距离为,
由直线截圆所得的弦长为可得
,整理得,
解得或(舍去),令
,
又,当且仅当时,等号成立,
则
.
故答案为:.
本题考查直线和圆的位置关系,考核基本不等式求最值,关键是对目标式进行变形,变成能用基本不等式求最值的形式,也可用换元法进行变形,是中档题.
16.5040.
【解析】
分两类,一类是甲乙都参加,另一类是甲乙中选一人,方法数为。填5040.
利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.在本题中,甲与乙是两个特殊元素,对于特殊元素“优先法”,所以有了分类。本题还涉及不相邻问题,采用“插空法”。
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(1)①见解析,②见解析;(2)见解析
【解析】
(1)①把代入函数解析式,求出函数的导函数得到,再求出,利用直线方程的点斜式求函数在点处的切线方程;
②令,利用导数研究函数的单调性,可得当时,;当时,;当时,.
(2)由题意,,在上有唯一零点.利用导数可得当时,在上单调递减,当,时,在,上单调递增,得到.由在恒成立,且有唯一解,可得,得,即.令,则,再由在上恒成立,得在上单调递减,进一步得到在上单调递增,由此可得.
【详解】
解:(1)①当时,,,,
又,切线方程为,即;
②令,
则,
在上单调递减.
又,
当时,,即;
当时,,即;
当时,,即.
证明:(2)由题意,,
而,
令,解得.
,,
在上有唯一零点.
当时,,在上单调递减,
当,时,,在,上单调递增.
.
在恒成立,且有唯一解,
,即,
消去,得,
即.
令,则,
在上恒成立,
在上单调递减,
又, ,
.
在上单调递增,
.
本题考查利用导数研究过曲线上某点处的切线方程,考查利用导数研究函数的单调性,考查逻辑思维能力与推理论证能力,属难题.
18.(1)见解析(2)
【解析】
(1)根据等边三角形的性质证得,根据面面垂直的性质定理,证得底面,由此证得,结合证得平面,由此证得:平面平面.
(2)建立空间直角坐标系,利用平面和平面的法向量,计算出平面与平面所成的锐二面角的余弦值.
【详解】
(1)证明:∵为等边三角形,为的中点,∴
∵平面底面,平面底面,
∴底面平面,∴
又由题意可知为正方形,
又,∴平面
平面,∴平面平面
(2)如图建立空间直角坐标系,则,,,由已知,得,
设平面的法向量为,则
令,则,
∴
由(1)知平面的法向量可取为
∴
∴平面与平面所成的锐二面角的余弦值为.
本小题主要考查面面垂直的判定定理和性质定理,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.
19.(Ⅰ).
(Ⅱ).
【解析】
详解:(Ⅰ)
当时,由,解得;
当时,不成立;
当时,由,解得.
所以不等式的解集为.
(Ⅱ)因为,
所以.
由题意知对,,
即,
因为,
所以,解得.
⑴ 绝对值不等式解法的基本思路是:去掉绝对值号,把它转化为一般的不等式求解,转化的方法一般有:①绝对值定义法;②平方法;③零点区域法.
⑵ 不等式的恒成立可用分离变量法.若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围.这种方法本质也是求最值.一般有:
① 为参数)恒成立
②为参数)恒成立 .
20.(1)(2)
【解析】
(1)由公式可化极坐标方程为直角坐标方程;
(2)把点极坐标化为直角坐标,直线的参数方程是过定点的标准形式,因此直接把参数方程代入曲线的方程,利用参数的几何意义求解.
【详解】
解:(1),则,∴,
所以曲线的直角坐标方程为,即
(2)点的直角坐标为,易知.设对应参数分别为
将与联立得
本题考查极坐标方程与直角坐标方程的互化,考查直线参数方程,解题时可利用利用参数方程的几何意义求直线上两点间距离问题.
21.(1)(2)分布列见解析,数学期望(3)建议甲乘坐高铁从市到市.见解析
【解析】
(1)根据分层抽样的特征可以得知,样本中出行的老年人、中年人、青年人人次分别为,,,即可按照古典概型的概率计算公式计算得出;
(2)依题意可知服从二项分布,先计算出随机选取人次,此人为老年人概率是,所以,即,即可求出的分布列和数学期望;
(3)可以计算满意度均值来比较乘坐高铁还是飞机.
【详解】
(1)设事件:“在样本中任取个,这个出行人恰好不是青年人”为,
由表可得:样本中出行的老年人、中年人、青年人人次分别为,,,
所以在样本中任取个,这个出行人恰好不是青年人的概率.
(2)由题意,的所有可能取值为:
因为在2018年从市到市乘坐高铁的所有成年人中,随机选取人次,此人
为老年人概率是,
所以,
,
,
所以随机变量的分布列为:
故.
(3)答案不唯一,言之有理即可.
如可以从满意度的均值来分析问题,参考答案如下:
由表可知,乘坐高铁的人满意度均值为:
乘坐飞机的人满意度均值为:
因为,
所以建议甲乘坐高铁从市到市.
本题主要考查了分层抽样的应用、古典概型的概率计算、以及离散型随机变量的分布列和期望的计算,解题关键是对题意的理解,概率类型的判断,属于中档题.
22.(1);(2)
【解析】
(1),对函数求导,分别求出和,即可求出在点处的切线方程;
(2)对求导,分、和三种情况讨论的单调性,再结合在上恒成立,可求得的取值范围.
【详解】
(1)因为,所以,所以,
则,故曲线在点处的切线方程为.
(2)因为,所以,
①当时,在上恒成立,则在上单调递增,
从而成立,故符合题意;
②当时,令,解得,即在上单调递减,
则,故不符合题意;
③当时,在上恒成立,即在上单调递减,则,故不符合题意.
综上,的取值范围为.
本题考查了曲线的切线方程的求法,考查了利用导数研究函数的单调性,考查了不等式恒成立问题,利用分类讨论是解决本题的较好方法,属于中档题.
展开阅读全文