资源描述
2016年高考数学理试题分类汇编
圆锥曲线
一、选择题
1、(2016年四川高考)设O为坐标原点,P是以F为焦点的抛物线 上任意一点,M是线段PF上的点,且=2,则直线OM的斜率的最大值为21教育网
(A) (B) (C) (D)1
【答案】C
2、(2016年天津高考)已知双曲线(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A、B、C、D四点,四边形的ABCD的面积为2b,则双曲线的方程为( )
(A)(B)(C)(D)
【答案】D
3、(2016年全国I高考)已知方程–=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是
(A)(–1,3) (B)(–1,) (C)(0,3) (D)(0,)21·cn·jy·com
【答案】A
4、(2016年全国I高考)以抛物线C的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点.已知|AB|=,|DE|=,则C的焦点到准线的距离为2·1·c·n·j·y
(A)2 (B)4 (C)6 (D)8www-2-1-cnjy-com
【答案】B
5、(2016年全国II高考)圆的圆心到直线的距离为1,则a=( )
(A) (B) (C) (D)2
【答案】A
6、(2016年全国II高考)圆已知是双曲线的左,右焦点,点在上,与轴垂直,,则E的离心率为( )2-1-c-n-j-y
(A) (B) (C) (D)2
【答案】A
7、(2016年全国III高考)已知O为坐标原点,F是椭圆C:的左焦点,A,B分别为C的左,右顶点.P 21*cnjy*com
为C上一点,且轴.过点A的直线l与线段交于点M,与y轴交于点E.若直线BM经过OE的中
点,则C的离心率为
(A) (B) (C) (D)
【答案】A
8、(2016年浙江高考) 已知椭圆C1:+y2=1(m>1)与双曲线C2:–y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则【版权所有:21教育】
A.m>n且e1e2>1 B.m>n且e1e2<1 C.m<n且e1e2>1 D.m<n且e1e2<1
【答案】A
二、填空题
1、(2016年北京高考)双曲线(,)的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点,若正方形OABC的边长为2,则_______________.
【答案】2
2、(2016年山东高考)已知双曲线E: (a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是_______.
【答案】2
【解析】由题意,所以,
于是点在双曲线上,代入方程,得,
在由得的离心率为,应填2.
3、(2016年上海高考)已知平行直线,则的距离_______________
【答案】
4、(2016年浙江高考)若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是_______.
【答案】
5、(2016江苏省高考)
如图,在平面直角坐标系xOy中,F是椭圆 的右焦点,直线 与椭圆交于B,C两点,且 ,则该椭圆的离心率是 ▲ .
(第10题)
【答案】
三、解答题
1、(2016年北京高考) 已知椭圆C: ()的离心率为 ,,,,的面积为1.
(1)求椭圆C的方程;
(2)设的椭圆上一点,直线与轴交于点M,直线PB与轴交于点N.
求证:为定值.
【解析】⑴由已知,,又,
解得
∴椭圆的方程为.
⑵方法一:
设椭圆上一点,则.
直线:,令,得.
∴
直线:,令,得.
∴
将代入上式得
故为定值.
方法二:
设椭圆 上一点,
直线PA:,令,得.
∴
直线:,令,得.
∴
故为定值.
2、(2016年山东高考)平面直角坐标系中,椭圆C: 的离心率是,抛物线E:的焦点F是C的一个顶点.www.21-cn-
(I)求椭圆C的方程;
(II)设P是E上的动点,且位于第一象限,E在点P处的切线与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.21·世纪*教育网
(i)求证:点M在定直线上;
(ii)直线与y轴交于点G,记的面积为,的面积为,求 的最大值及取得最大值时点P的坐标.【出处:21教育名师】
【解析】(Ⅰ) 由离心率是,有,
又抛物线的焦点坐标为,所以,于是,
所以椭圆的方程为.
(Ⅱ) (i)设点坐标为,
由得,所以在点处的切线的斜率为,
因此切线的方程为,
设,,
将代入,得
.
于是,,
又,
于是 直线的方程为.
联立方程与,得的坐标为.
所以点在定直线上.
(ii)在切线的方程为中,令,得,
即点的坐标为,又,,
所以;
再由,得
于是有 .
令,得
当时,即时,取得最大值.
此时,,所以点的坐标为.
所以的最大值为,取得最大值时点的坐标为.
3、(2016年上海高考) 有一块正方形菜地,所在直线是一条小河,收货的蔬菜可送到点或河边运走。于是,菜地分为两个区域和,其中中的蔬菜运到河边较近,中的蔬菜运到点较近,而菜地内和的分界线上的点到河边与到点的距离相等,现建立平面直角坐标系,其中原点为的中点,点的坐标为(1,0),如图21世纪教育网版权所有
(1) 求菜地内的分界线的方程
(2) 菜农从蔬菜运量估计出面积是面积的两倍,由此得到面积的“经验值”为。设是上纵坐标为1的点,请计算以为一边、另一边过点的矩形的面积,及五边形的面积,并判断哪一个更接近于面积的经验值21教育名师原创作品
【解析】
(1)因为上的点到直线与到点的距离相等,所以是以为焦点、以
为准线的抛物线在正方形内的部分,其方程为().
(2)依题意,点的坐标为.
所求的矩形面积为,而所求的五边形面积为.
矩形面积与“经验值”之差的绝对值为,而五边形面积与“经验值”之差
的绝对值为,所以五边形面积更接近于面积的“经验值”.
4、(2016年上海高考)本题共有2个小题,第1小题满分6分,第2小题满分8分.
双曲线的左、右焦点分别为,直线过且与双曲线交于两点。
(1)若的倾斜角为,是等边三角形,求双曲线的渐近线方程;
(2)设,若的斜率存在,且,求的斜率.
【答案】(1).(2).
【解析】(1)设.
由题意,,,,
因为是等边三角形,所以,
即,解得.
故双曲线的渐近线方程为.
(2)由已知,,.
设,,直线.显然.
由,得.
因为与双曲线交于两点,所以,且.
设的中点为.
由即,知,故.
而,,,
所以,得,故的斜率为.
5、(2016年四川高考)已知椭圆E:的两个焦点与短轴的一个端点是直角三角形的3个顶点,直线l:y=-x+3与椭圆E有且只有一个公共点T.
(I)求椭圆E的方程及点T的坐标;
(II)设O是坐标原点,直线l’平行于OT,与椭圆E交于不同的两点A、B,且与直线l交于点P.证明:存在常数λ,使得∣PT∣2=λ∣PA∣· ∣PB∣,并求λ的值.
有方程组 得.①
方程①的判别式为,由,得,
此方程①的解为,
所以椭圆E的方程为.
点T坐标为(2,1).
由②得.
所以 ,
同理,
所以
.
故存在常数,使得.
6、(2016年天津高考)设椭圆()的右焦点为,右顶点为,已知,其中 为原点,为椭圆的离心率.【来源:21cnj*y.co*m】
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线的斜率的取值范围.
【解析】
(2)(Ⅱ)解:设直线的斜率为(),则直线的方程为.设,由方程组,消去,整理得.
解得,或,由题意得,从而.
由(Ⅰ)知,,设,有,.由,得,所以,解得.因此直线的方程为.
设,由方程组消去,解得.在中,,即,化简得,即,解得或.
所以,直线的斜率的取值范围为.
7、(2016年全国I高考)设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.
(I)证明为定值,并写出点E的轨迹方程;
(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.
【解析】(Ⅰ)因为,,故,
所以,故.
又圆的标准方程为,从而,所以.
由题设得,,,由椭圆定义可得点的轨迹方程为:().
8、(2016年全国II高考)已知椭圆的焦点在轴上,是的左顶点,斜率为的直线交于两点,点在上,.21*cnjy*com
(Ⅰ)当时,求的面积;
(Ⅱ)当时,求的取值范围.
【解析】 ⑴当时,椭圆E的方程为,A点坐标为,
则直线AM的方程为.
联立并整理得,
解得或,则
因为,所以
因为,,
所以,整理得,
无实根,所以.
所以的面积为.
⑵直线AM的方程为,
联立并整理得,
解得或,
所以
所以
因为
所以,整理得,.
因为椭圆E的焦点在x轴,所以,即,整理得
解得.
9、(2016年全国III高考)已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.【来源:21·世纪·教育·网】
(I)若在线段上,是的中点,证明;
(II)若的面积是的面积的两倍,求中点的轨迹方程.
10、(2016年浙江高考)如图,设椭圆(a>1).
(I)求直线y=kx+1被椭圆截得的线段长(用a、k表示);
(II)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.
【试题解析】(I)设直线被椭圆截得的线段为,由得
,故,.
因此.
(II)假设圆与椭圆的公共点有个,由对称性可设轴左侧的椭圆上有两个不同的点,,满足
.
记直线,的斜率分别为,,且,,
.
11、(2016江苏省高考)
如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:及其上一点A(2,4)
(1) 设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;
(2) 设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;
(3) 设点T(t,0)满足:存在圆M上的两点P和Q,使得,求实数t的取值范围。
解:圆M的标准方程为,所以圆心M(6,7),半径为5,.
(1)由圆心N在直线x=6上,可设.因为圆N与x轴相切,与圆M外切,
所以,于是圆N的半径为,从而,解得.
因此,圆N的标准方程为.
(2)因为直线OA,所以直线l的斜率为.
设直线l的方程为y=2x+m,即2x-y+m=0,
则圆心M到直线l的距离
因为
而
所以,解得m=5或m=-15.
故直线l的方程为2x-y+5=0或2x-y-15=0.
(3)设
因为,所以 ……①
因为点Q在圆M上,所以 …….②
将①代入②,得.
于是点既在圆M上,又在圆上,
从而圆与圆有公共点,
所以 解得.
因此,实数t的取值范围是.
展开阅读全文