资源描述
1.4 二次函数的应用(1)导学案
班级 学号 姓名
课前预习
运用二次函数求实际问题中的最大值或最小值, 首先应当求出函数 和自变量的 ,再求出它的 ,取得最大值或最小值的相应的自变量的值必须在 内.21世纪教育网版权所有
课堂例题
例1、图中窗户边框的上半部分是由四个全等扇形组成的半圆,下部分是矩形。如果制作一个窗户边框的材料总长为6米,那么如何设计这个窗户边框的尺寸,使透光面积最大(结果精确到0.01m2)?21·cn·jy·com
变式
用长为6m的铝合金条制成如图形状的矩形窗框,问窗框的宽和高各是多少米时,窗户的透光面积最大?最大面积是多少?
课后作业
一、 基础达标
1. 对于二次函数y=-5x2+8x-1,下列说法中正确的是( )
A. 有最小值2.2 B. 有最大值2.2 C. 有最小值-2.2 D. 有最大值-2
2. 小明用一根长为8cm的细铁丝围成矩形,则矩形的最大面积是( )
A. 4cm2 B. 8cm2 C. 16cm2 D. 32cm2
3.已知二次函数y=(x-1)2+(x-3)2 ,当x= 时,函数达到最小值.
4.已知二次函数y=-x2+mx+2的最大值为,则m= .
5.某桥梁的两条钢缆具有相同抛物线的形状,两条抛物线关于y轴对称,其中一条抛物线的关系式是.
(1) 求另一条钢缆的函数关系式;
(2) 求出两条钢缆的最低点之间的距离.
6.如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=8,点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为点E,F,得四边形DECF,设DE=x,DF=y.
(1)求y关于x的函数关系式,并求出x的取值范围;
(2)设四边形DECF的面积为S,求S关于x的函数关系式,并求出S的最大值.
二、 提高训练
7.抛物线y=x2+bx+c与x轴的正半轴交于A,B两点,与y轴交于C点,且线段AB的长为1,△ABC的面积为1,则b的值是_____.21教育网
8.如图,ΔABC中,BC=AC=4,∠ACB=120°,点E是AC上一个动点(点E与A,C不重合),ED∥BC,求△CED的最大值
9.已知抛物线的解析式为y=2x2+3mx+2m,
(1)求该抛物线的顶点坐标(x0,y0);
(2)以x0为自变量,写出y0与x0之间的关系式;
(3)当m为何值时,抛物线的顶点位置最高?
三、探究创新
10.如图,矩形ABCD中,AB=6cm,BC=12cm.点M从点A开始沿AB边向点B以1cm/秒的速度向B点移动,点N从点B开始沿BC边以2cm/秒的速度向点C移动. 若M, N分别从A,B点同时出发,设移动时间为t (0<t<6),△DMN的面积为S.
(1) 求S关于t的函数关系式,并求出S的最小值;
(2) 当△DMN为直角三角形时,求△DMN的面积.
小贴士:对△DMN的内角分别作直角进行分类讨论.
展开阅读全文