收藏 分销(赏)

小学数学常用公式大.doc

上传人:精**** 文档编号:9998084 上传时间:2025-04-16 格式:DOC 页数:60 大小:681.54KB
下载 相关 举报
小学数学常用公式大.doc_第1页
第1页 / 共60页
小学数学常用公式大.doc_第2页
第2页 / 共60页
点击查看更多>>
资源描述
小学数学常用公式大全(全面完整版) (可以直接使用,可编辑 全面完整版资料,欢迎下载) 小学数学常用公式 (单位换算表) 长度单位换算   1千米=1000米1米=10分米   1分米=10厘米1米=100厘米   1厘米=10毫米 面积单位换算   1平方千米=100公顷   1公顷=10000平方米   1平方米=100平方分米   1平方分米=100平方厘米   1平方厘米=100平方毫米 体(容)积单位换算   1立方米=1000立方分米   1立方分米=1000立方厘米   1立方分米=1升   1立方厘米=1毫升   1立方米=1000升   重量单位换算   1吨=1000千克   1千克=1000克   1千克=1公斤 人民币单位换算   1元=10角   1角=10分   1元=100分 时间单位换算   1世纪=100年1年=12月   大月(31天)有:1\3\5\7\8\10\12月   小月(30天)的有:4\6\9\11月   平年2月28天,闰年2月29天   平年全年365天,闰年全年366天   1日=24小时1时=60分   1分=60秒1时=3600秒 一、长度(一) 什么是长度   长度是一维空间的度量。   (二) 长度常用单位   * 公里(km) * 米(m) * 分米(dm) * 厘米(cm) * 毫米(mm)(三) 单位之间的换算    1厘米 =10 毫米 * 1分米 =10 厘米 * 1米 =1000 毫米 * 1千米 =1000 米   二、面积(一)什么是面积   面积,就是物体所占平面的大小。对立体物体的表面的多少的测量一般称表面积。   (二)常用的面积单位 平方毫米 * 平方厘米 * 平方分米 * 平方米 * 平方千米   (三)面积单位的换算   * 1平方厘米 =100 平方毫米 * 1平方分米=100平方厘米 * 1平方米 =100 平方分米   * 1公倾 =10000 平方米 * 1平方公里 =100 公顷   三、体积和容积(一)什么是体积、容积   体积,就是物体所占空间的大小。   容积,箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。   (二)常用单位   1 体积单位   * 立方米 * 立方分米 * 立方厘米   2 容积单位 * 升 * 毫升   (三)单位换算 1 体积单位   * 1立方米=1000立方分米 ;* 1立方分米=1000立方厘米   2 容积单位   * 1升=1000毫升;* 1升=1立方米 ;* 1毫升=1立方厘米   四、质量   (一)什么是质量   质量,就是表示物体有多重。   (二)常用单位   * 吨 t * 千克 kg * 克 g   (三)常用换算   * 一吨=1000千克 ;* 1千克=1000克   五、时间(一)什么是时间   是指有起点和终点的一段时间   (二)常用单位   世纪、 年 、 月 、 日 、 时 、 分、 秒   (三)单位换算   * 1世纪=100年 ;*平年1年=365天;*闰年一年=366天   * 一、三、五、七、八、十、十二是大月 大月有31 天   * 四、六、九、十一是小月小月有30天   * 平年2月有28天 闰年2月有29天   * 1天= 24小时 * 1小时=60分 * 一分=60秒    小学数学常用图形周长面积体积计算公式: 1,正方形 C周长 S面积 a边长 周长=边长×4 面积=边长×边长 C=4a S=a×a S=a2 2,正方体 V体积 a棱长 表面积=棱长×棱长×6体积=棱长×棱长×棱长 S表=a×a×6 表=6a2 V=a×a×a V= a3 3,长方形 C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4,长方体 V体积 S面积 a长 b宽 h高 (1)表面积=(长×宽+长×高+宽×高)×2 (2)体积=长×宽×高 S=2(ab+ah+bh) V=abh 5,三角形 S面积 a底 h高 面积=底×高÷2 S=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高 6,平行四边形 S面积 a底 h高 面积=底×高 S=ah 7,梯形 S面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 S=(a+b)× h÷2 8,圆形 S面积 C周长 π圆周率 d直径 r半径 周长=直径×π 周长=2×π×半径 面积=半径×半径×π C=πd C=2πr S=πr2 d=C÷π d=2r r=d÷2 r=C÷2÷π S环=π(R2-r2) 9,圆柱体 V体积 h高 S底面积 r底面半径 C底面周长 侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 S侧=Ch S侧=πdh V=Sh V=πr2h 圆柱体积=侧面积÷2×半径 10,圆锥体 V体积 h高 S底面积 r底面半径 体积=底面积×高÷3 V=Sh÷3 长度单位换算   1千米=1000米;1米=10分米 1分米=10厘米;1米=100厘米 1厘米=10毫米 面积单位换算   1平方千米=100公顷;1公顷=10000平方米;1平方米=100平方分米 1平方分米=100平方厘米;1平方厘米=100平方毫米 1平方米=0.0015亩;1万平方米=15亩 1公顷=15亩=100公亩=10000平方米 1公亩等于100平方米 1(市)亩等于666.66平方米 体(容)积单位换算   1立方米=1000立方分米;1立方分米=1000立方厘米;1立方分米=1升 1立方厘米=1毫升;1立方米=1000升 重量单位换算   1吨=1000千克;1千克=1000克;1千克=1公斤 人民币单位换算 1元=10角;1角=10分;1元=100分 时间单位换算   1世纪=100年1年=12月 大月(31天)有:1\3\5\7\8\10\12月;小月(30天)的有:4\6\9\11月 平年2月28天,闰年2月29天;平年全年365天,闰年全年366天 1日=24小时1时=60分;1分=60秒1时=3600秒 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或小数+差=大数) 植树问题 1非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%) 小学定义定理公式(一) 三角形的面积=底×高÷2。公式S=a×h÷2 正方形的面积=边长×边长;公式S=a×a 长方形的面积=长×宽;公式S=a×b 平行四边形的面积=底×高;公式S=a×h 梯形的面积=(上底+下底)×高÷2;公式S=(a+b)h÷2 内角和:三角形的内角和=180度。 长方体的体积=长×宽×高;公式:V=abh 长方体(或正方体)的体积=底面积×高;公式:V=abh 正方体的体积=棱长×棱长×棱长;公式:V=aaa 圆的周长=直径×π;公式:L=πd=2πr 圆的面积=半径×半径×π;公式:S=πr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh 圆锥的体积=1/3底面×积高。公式:V=1/3Sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 分数的乘法则:用分子的积做分子,用分母的积做分母。 分数的除法则:除以一个数等于乘以这个数的倒数。 单位换算 (1)1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米 (2)1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米 (3)1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米 (4)1吨=1000千克1千克=1000克=1公斤=2市斤 (5)1公顷=10000平方米1亩=666.666平方米 1平方米=0.0015亩,1万平方米=15亩 (6)1升=1立方分米=1000毫升1毫升=1立方厘米 数量关系计算公式方面 1.单价×数量=总价 2.单产量×数量=总产量 3.速度×时间=路程 4.工效×时间=工作总量 小学数学定义定理公式(二) 一、算术方面 1.加法交换律:两数相加交换加数的位置,和不变。 2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。 3.乘法交换律:两数相乘,交换因数的位置,积不变。 4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。 5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5。 6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。 7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。 8.方程式:含有未知数的等式叫方程式。 9.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。 10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。 11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。 13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。 15.分数除以整数(0除外),等于分数乘以这个整数的倒数。 16.真分数:分子比分母小的分数叫做真分数。 17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。 18.带分数:把假分数写成整数和真分数的形式,叫做带分数。 19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。 20.一个数除以分数,等于这个数乘以分数的倒数。 21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。 数学定义: 一、长度 (一) 什么是长度 长度是一维空间的度量。   (二) 长度常用单位 * 公里(km) * 米(m) * 分米(dm) * 厘米(cm) * 毫米(mm) * 微米(um) (三) 单位之间的换算 * 1毫米 =1000微米 * 1厘米 =10 毫米 * 1分米 =10 厘米 * 1米 =1000 毫米 * 1千米 =1000 米 二、面积 (一)什么是面积 面积,就是物体所占平面的大小。对立体物体的表面的多少的测量一般称表面积。 (二)常用的面积单位 * 平方毫米 * 平方厘米 * 平方分米 * 平方米 * 平方千米 (三)面积单位的换算 * 1平方厘米 =100 平方毫米 * 1平方分米=100平方厘米 * 1平方米 =100 平方分米 * 1公倾 =10000 平方米 * 1平方公里 =100 公顷 三、体积和容积 (一)什么是体积、容积 体积,就是物体所占空间的大小。 容积,箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。 (二)常用单位 1 体积单位 * 立方米 * 立方分米 * 立方厘米 2 容积单位 * 升 * 毫升 (三)单位换算 1 体积单位 * 1立方米=1000立方分米 ;* 1立方分米=1000立方厘米 2 容积单位 * 1升=1000毫升;* 1升=1立方米 ;* 1毫升=1立方厘米 四、质量 (一)什么是质量 质量,就是表示表示物体有多重。 (二)常用单位 * 吨 t * 千克 kg * 克 g (三)常用换算 * 一吨=1000千克 ;* 1千克=1000克 五、时间 (一)什么是时间 是指有起点和终点的一段时间 (二)常用单位 世纪、 年 、 月 、 日 、 时 、 分、 秒 (三)单位换算 * 1世纪=100年 ;* 1年=365天 平年 ;* 一年=366天 闰年 * 一、三、五、七、八、十、十二是大月 大月有31 天 * 四、六、九、十一是小月小月 小月有30天 * 平年2月有28天 闰年2月有29天 * 1天= 24小时 * 1小时=60分 * 一分=60秒 小学数学知识点大全 基本概念 第一章 数和数的运算 一、概念 (一)整数 1、整数的意义 自然数和0都是整数。 2、自然数 我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。 3、计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。其中“一”是计数的基本单位。 10个1是10,10个10是100……每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。 4、数位 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 5、整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。 6、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。 7、一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。 ⑴准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。 例如把 1254300000 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。 ⑵近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 1302490015 省略亿后面的尾数是 13 亿。⑶四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。这种求近似数的方法就叫做四舍五入法。 8、整数大小的比较:位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。以此类推。 (二)小数 1、小数的意义 把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。如1/10记作0.1,7/100记作0.07。 一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几…… 一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。 小数点右边第一位叫十分位,计数单位是十分之一(0.1);第二位叫百分位,计数单位是百分之一(0.01)……小数部分最大的计数单位是十分之一,没有最小的计数单位。小数部分有几个数位,就叫做几位小数。如0.36是两位小数,3.066是三位小数 在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。 2、小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。 3、小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。 4、比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大…… 5、小数的分类 ⑴纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。 ⑵带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小数。 ⑶有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。 ⑷无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 …… 3.1415926 …… ⑸无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 例如:∏ ⑹循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 …… 0.0333 …… 12.109109 …… 一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54 ” 。 ⑺纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 …… 0.5656 …… ⑻混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 …… 0.03333 …… 写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有一个数字,就只在它的上面点一个点。 (三)分数 1、分数的意义 把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。 在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。 把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。 2、分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。 3、分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。 4、比较分数的大小: ⑴分母相同的分数,分子大的那个分数就大。 ⑵分子相同的分数,分母小的那个分数就大。 ⑶分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小。 ⑷如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。 5、分数的分类 按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数 ⑴真分数:分子比分母小的分数叫做真分数。真分数小于1。 ⑵假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。 ⑶带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。 6、分数和除法的关系及分数的基本性质 ⑴除法是一种运算,有运算符号;分数是一种数。因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子。 ⑵由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质。 ⑶分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据。 7、约分和通分 ⑴分子、分母是互质数的分数,叫做最简分数。 ⑵把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分。 ⑶约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。 ⑷把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。 ⑸通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。 8、倒 数 ⑴乘积是1的两个数互为倒数。 ⑵求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。 ⑶1的倒数是1,0没有倒数 (四)百分数 1、百分数的意义 表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。 2、百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。 3、百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。 4、百分数与折数、成数的互化: 例如:三折就是30%,七五折就是75%,成数就是十分之几,如一成就是牐 闯砂俜质 褪?0%,则六成五就是65%。 5、纳税和利息: 税率:应纳税额与各种收入的比率。 利率:利息与本金的百分率。由银行规定按年或按月计算。 利息的计算公式:利息=本金×利率×时间 6、百分数与分数的区别主要有以下三点: ⑴意义不同。百分数是“表示一个数是另一个数的百分之几的数。”它只能表示两数之间的倍数关系,不能表示某一具体数量。如:可以说 1米 是 5米 的 20%,不可以说“一段绳子长为20%米。”因此,百分数后面不能带单位名称。分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。分数不仅 可以表示两数之间的倍数关系,如:甲数是3,乙数是4,甲数是乙数的?;还可以表示一定的数量,如:犌Э恕 米等。 ⑵应用范围不同。百分数在生产、工作和生活中,常用于调查、统计、分析与比较。而分数常常是在测量、计算中,得不到整数结果时使用。 ⑶书写形式不同。百分数通常不写成分数形式,而采用百分号“%”来表示。如:百分之四十五,写作:45%;百分数的分母固定为100,因此,不论百分数 的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分 数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。 7、数的互化 ⑴小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。 ⑵分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。 ⑶一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。 ⑷小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。 ⑸百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。 ⑹分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。 ⑺百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。 (五)数的整除 1、整除的意义 整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。 除尽的意义 甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为0)。 2、约数和倍数 ⑴如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。 ⑵一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。 ⑶一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。 3、奇数和偶数 ⑴自然数按能否被2 整除的特征可分为奇数和偶数。 ①能被2整除的数叫做偶数。0也是偶数。 ②不能被2整除的数叫做奇数。 ⑵奇数和偶数的运算性质: ①相邻两个自然数之和是奇数,之积是偶数。 ②奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数;奇数-奇数=偶数, 奇数-偶数=奇数,偶数-奇数=奇数,偶数-偶数=偶数;奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。 4、整除的特征 ⑴个位上是0、2、4、6、8的数,都能被2整除。 ⑵个位上是0或5的数,都能被5整除。 ⑶一个数的各位上的数的和能被3整除,这个数就能被3整除。 ⑷一个数各位数上的和能被9整除,这个数就能被9整除。 ⑸能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。 ⑹一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。 ⑺一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。 5、质数和合数 ⑴一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。 ⑵一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。 ⑶1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。 6、分解质因数 ⑴质因数 每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。 ⑵分解质因数 把一个合数用质因数相乘的形式表示出来,叫做分解质因数。通常用短除法来分解质因数。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。 ⑶公因(约)数 几个数公有的因数叫做这几个数的公因数。其中最大的一个叫这几个数的最大公因数。 公因数只有1的两个数,叫做互质数。成互质关系的两个数,有下列几种情况:①和任何自然数互质; ②相邻的两个自然数互质; ③当合数不是质数的倍数时,这个合数和这个质数互质; ④两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。 如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。 如果两个数是互质数,它们的最大公约数就是1。 ⑷ 公倍数 ①几个数公有的倍数叫做这几个数的公倍数。其中最大的一个叫这几个数的最大公倍数。 求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数。 ②几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。 求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。 如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。 如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。 几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。 二、性质和规律 (一)商不变的规律 商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。 (二)小数的性质 小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。 (三)小数点位置的移动引起小数大小的变化 1、小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍…… 2、小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍…… 3、小数点向左移或者向右移位数不够时,要用“0"补足位。 (四)分数的基本性质 分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。 (五)分数与除法的关系 1、被除数÷除数= 被除数/除数 2、因为零不能作除数,所以分数的分母不能为零。 3、被除数 相当于分子,除数相当于分母。 三、运算法则 (一)整数四则运算的法则 1、整数加法: 把两个数合并成一个数的运算叫做加法。 在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。 加数+加数=和 一个加数=和-另一个加数 2、整数减法: 已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。 在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。 加法和减法互为逆运算。 3、整数乘法: 求几个相同加数的和的简便运算叫做乘法。 在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。 在乘法里,0和任何数相乘都得0. 1和任何数相乘都的任何数。 一个因数× 一个因数 =积 一个因数=积÷另一个因数 4、整数除法: 已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。 在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。 乘法和除法互为逆运算。 在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。 被除数÷除数=商 除数=被除数÷商 被除数=商×除数 5、乘方: 求几个相同因数的积的运算叫做乘方。例如 3 × 3 =32 (二)小数四则运算 1、小数加法: 小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。 2、小数减法: 小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算. 3、小数乘法: 小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。 4、小数除法: 小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。 (三)分数四则运算 1、分数加法: 分数加法的意义与整数加法的意义相同。 是把两个数合并成一个数的运算。 2、分数减法: 分数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。 3、分数乘法: 分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。 4、分数除法: 分数除法的意义与整数除法的意义相同。就是已知两个因数的积与其中一个因数,求另一个因数的运算。 (四)运算定律 1、加法运算定律 ⑴加法交换律: 两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。 ⑵加法结合律: 三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。 2、乘法运算定律 ⑴乘法交换律: 两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。 ⑵乘法结合律: 三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。 ⑶乘法分配律: 两个数的和与一个数相乘,可以把两个加数分别与这个数相乘,再把两个积相加,即(a+b)×c=a×c+b×c 。 ⑷乘法分配律扩展: 两个数的差与一数相乘,可以先把它们与这个数分别相乘,再相减,即(a-b)×c=a×c-b×c 3、减法运算定律 ⑴从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。 ⑵一个数连续减去两个数,可以先减去第二个减数,再减去第一个减数,即a-b-c=a-c-b。 4、除法运算定律 ⑴一个数连续除以两个数,可以除以这两个数的集,即a÷b÷c=a÷(b×c)。 ⑵一个数连续除以两个数,可以先除以第二除数,再除以第一个除数,即a÷b÷c=a÷c÷b。 5、其它 a-b+c=a+c-b a-
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 小学数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服