资源描述
三角形四边形动点问题
适用学科
初中
适用年级
初二
适用区域
人教版
课时时长(分钟)
60分钟
知识点
几何综合动点
教学目标
1、能掌握几何动点类问题的思想方法:数学思想:分类思想 数形结合思想 转化思想
2、培养学生的几何动点问题中动中求静的思考能力
教学重点
培养学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力问题..
教学难点
培养学生主动探究知识,合作交流的意识,体验数学中的美,
激发学习兴趣,从而培养学生勤于动脑和动手的良好品质.
教学过程
一、 复习预习
1. 复习所学过的几何图形及其性质
2. 列出所有几何图形的面积边长公式.
二、知识讲解
专题一:一函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.
一、应用勾股定理建立函数解析式。
二、应用比例式建立函数解析式。
三、应用求图形面积的方法建立函数关系式。
专题二:动态几何型压轴题
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、 以动态几何为主线的压轴题。
(一)点动问题。 (二)线动问题。 (三)面动问题。
二、解决动态几何问题的常见方法有:
1、特殊探路,一般推证。2、动手实践,操作确认。3、建立联系,计算说明。
三、专题二总结,本大类习题的共性:
1.代数、几何的高度综合(数形结合);着力于数学本质及核心内容的考查;四大数学思想:数学结合、分类讨论、方程、函数.
2.以形为载体,研究数量关系;通过设、表、列获得函数关系式;研究特殊情况下的函数值。
专题三:双动点问题
点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力. 其中以灵活多变而著称的双动点问题更成为今年中考试题的热点,现采撷几例加以分类浅析,供读者欣赏.
1 以双动点为载体,探求函数图象问题。
2 以双动点为载体,探求结论开放性问题。
3 以双动点为载体,探求存在性问题。
4 以双动点为载体,探求函数最值问题。
双动点问题的动态问题是近几年来中考数学的热点题型.这类试题信息量大,对同学们获取信息和处理信息的能力要求较高;解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动。
专题四:函数中因动点产生的相似三角形问题
专题五:以圆为载体的动点问题
动点问题是初中数学的一个难点,中考经常考察,有一类动点问题,题中未说到圆,却与圆有关,只要巧妙地构造圆,以圆为载体,利用圆的有关性质,问题便会迎刃而解;此类问题方法巧妙,耐人寻味。
三、例题精析
【例题1】
如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts.(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,四边形PQCD为等腰梯形?(3)当t为何值时,四边形PQCD为直角梯形?
解析:
(1)四边形PQCD为平行四边形时PD=CQ.(2)四边形PQCD为等腰梯形时QC-PD=2CE.(3)四边形PQCD为直角梯形时QC-PD=EC.所有的关系式都可用含有t的方程来表示,即此题只要解三个方程即可.
解答:
解:(1)∵四边形PQCD平行为四边形∴PD=CQ
∴24-t=3t
解得:t=6
即当t=6时,四边形PQCD平行为四边形.
(2)过D作DE⊥BC于E
则四边形ABED为矩形∴BE=AD=24cm
∴EC=BC-BE=2cm
∵四边形PQCD为等腰梯形∴QC-PD=2CE
即3t-(24-t)=4
解得:t=7(s)即当t=7(s)时,四边形PQCD为等腰梯形.(3)由题意知:QC-PD=EC时,四边形PQCD为直角梯形即3t-(24-t)=2
解得:t=6.5(s)即当t=6.5(s)时,四边形PQCD为直角梯形.
点评:
此题主要考查了平行四边形、等腰梯形,直角梯形的判定,难易程度适中.
【例题2】
如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm.
(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;(2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形;(3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由.
解析:
以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形的必须条件是点P、N重合且点Q、M不重合,此时AP+ND=AD即2x+x2=20cm,BQ+MC≠BC即x+3x≠20cm;或者点Q、M重合且点P、N不重合,此时AP+ND≠AD即2x+x2≠20cm,BQ+MC=BC即x+3x=20cm.所以可以根据这两种情况来求解x的值.
以P,Q,M,N为顶点的四边形是平行四边形的话,因为由第一问可知点Q只能在点M的左侧.当点P在点N的左侧时,AP=MC,BQ=ND;当点P在点N的右侧时,AN=MC,BQ=PD.所以可以根据这些条件列出方程关系式.
如果以P,Q,M,N为顶点的四边形为等腰梯形,则必须使得AP+ND≠AD即2x+x2≠20cm,BQ+MC≠BC即x+3x≠20cm,AP=ND即2x=x2,BQ=MC即x=3x,x≠0.这些条件不能同时满足,所以不能成为等腰梯形.
解答:
解:(1)当点P与点N重合或点Q与点M重合时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边可能构成一个三角形.①当点P与点N重合时,由x2+2x=20,得x1= -1,x2=- -1(舍去).因为BQ+CM=x+3x=4(-1)<20,此时点Q与点M不重合.所以x= -1符合题意.②当点Q与点M重合时,由x+3x=20,得x=5.此时DN=x2=25>20,不符合题意.故点Q与点M不能重合.所以所求x的值为-1.(2)由(1)知,点Q只能在点M的左侧,①当点P在点N的左侧时,由20-(x+3x)=20-(2x+x2),解得x1=0(舍去),x2=2.当x=2时四边形PQMN是平行四边形.②当点P在点N的右侧时,由20-(x+3x)=(2x+x2)-20,解得x1=-10(舍去),x2=4.当x=4时四边形NQMP是平行四边形.所以当x=2或x=4时,以P,Q,M,N为顶点的四边形是平行四边形.(3)过点Q,M分别作AD的垂线,垂足分别为点E,F.由于2x>x,所以点E一定在点P的左侧.若以P,Q,M,N为顶点的四边形是等腰梯形,则点F一定在点N的右侧,且PE=NF,即2x-x=x2-3x.解得x1=0(舍去),x2=4.由于当x=4时,以P,Q,M,N为顶点的四边形是平行四边形,所以以P,Q,M,N为顶点的四边形不能为等腰梯形.
点评:
本题考查到三角形、平行四边形、等腰梯形等图形的边的特点.
【例题3】
如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21,动点P从点D出发,沿射线DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,P、Q分别从点D、C同时出发,当点Q运动到点B时,点P随之停止运动,设运动时间为t(s).(1)设△BPQ的面积为S,求S与t之间的函数关系;(2)当t为何值时,以B、P、Q三点为顶点的三角形是等腰三角形?
解析:
(1)若过点P作PM⊥BC于M,则四边形PDCM为矩形,得出PM=DC=12,由QB=16-t,可知:s= PM×QB=96-6t;(2)本题应分三种情况进行讨论,①若PQ=BQ,在Rt△PQM中,由PQ2=PM2+MQ2,PQ=QB,将各数据代入,可将时间t求出;②若BP=BQ,在Rt△PMB中,由PB2=BM2+PM2,BP=BQ,将数据代入,可将时间t求出;③若PB=PQ,PB2=PM2+BM2,PB=PQ,将数据代入,可将时间t求出.
解答:
解:(1)过点P作PM⊥BC于M,则四边形PDCM为矩形.∴PM=DC=12,∵QB=16-t,∴s= •QB•PM= (16-t)×12=96-6t(0≤t≤ ).(2)由图可知,CM=PD=2t,CQ=t,若以B、P、Q为顶点的三角形是等腰三角形,可以分三种情况
四、课堂运用
【基础】
1.如图,已知在矩形ABCD中,AD=8,CD=4,点E从点D出发,沿线段DA以每秒1个单位长的速度向点A方向移动,同时点F从点C出发,沿射线CD方向以每秒2个单位长的速度移动,当B,E,F三点共线时,两点同时停止运动.设点E移动的时间为t(秒)
(1)设四边形BCFE的面积为S,求S与t之间的函数关系式,并写出t的取值范围;
(2)求当t为何值时,以E,F,C三点为顶点的三角形是等腰三角形;
解析
(1)∵ED=t,CF=2t,∴S=S△BCE+ S△BCF=×8×4+×2t×t=16+ t2.
即S=16+ t2.(0 ≤t ≤4);
(2)①若EF=EC时,则点F只能在CD的延长线上,
∵EF2=,
EC2=,∴=.∴t=4或t=0(舍去);
②若EC=FC时,∵EC2=,FC2=4t2,∴=4t2.∴;
③若EF=FC时,∵EF2=,FC2=4t2,
∴=4t2.∴t1=(舍去),t2=.
∴当t的值为4,,时,以E,F,C三点为顶点的三角形是等腰三角形
【巩固】
2.如图1,在矩形ABCD中,AB=12cm,BC=6cm,点P从A点出发,沿A→B→C→D路线运动,到D点停止;点Q从D点出发,沿D→C→B→A运动,到A点停止.若点P、点Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每秒b(cm),点Q的速度变为每秒c(cm).如图2是点P出发x秒后△APD的面积S1(cm2)与x(秒)的函数关系图象;图3是点Q出发x秒后△AQD的面积S2(cm2)与x(秒)的函数关系图象.根据图象:
(1)求a、b、c的值;
(2)设点P离开点A的路程为y1(cm),点Q到点A还需要走的路程为y2(cm),请分别写出改变速度后y1、y2与出发后的运动时间x(秒)的函数关系式,并求出P与Q相遇时x的值.
【答案】(1) a=8;b=2;c=1
(2) y1=2x﹣8(x>8);y2=22﹣x(x>8); 出发10秒时,P与Q相遇
【解析】
(1)观察图象得,S△APQ=PA•AD=×(1×a)×6=24,
解得a=8(秒)
b==2(厘米/秒)
(22﹣8)c=(12×2+6)﹣2×8
解得c=1(厘米/秒)
(2)依题意得:y1=1×8+2(x﹣8),
即:y1=2x﹣8(x>8),
y2=(30﹣2×8)﹣1×(x﹣8)
=22﹣x(x>8)
又据题意,当y1=y2时,P与Q相遇,即
2x﹣8=22﹣x,
解得x=10(秒)
∴出发10秒时,P与Q相遇.
【拔高】
3.如图1,在矩形ABCD中,点P从B点出发沿着四边按B→C→D→A方向运动,开始以每秒m个单位匀速运动,a秒后变为每秒2个单位匀速运动,b秒后又恢复为每秒m个单位匀速运动.在运动过程中,△ABP的面积S与运动时间t的函数关系如图2所示.
(1)求矩形ABCD的长和宽;
(2)求m、a、b的值
【答案】(1) 长方形的长为8,宽为4
(2) m=1;a=4;b=11
【解析】
(1)从图象可知,当6≤t≤8时,△ABP面积不变
即6≤t≤8时,点P从点C运动到点D,且这时速度为每秒2个单位
∴CD=2(8﹣6)=4
∴AB=CD=4
当t=6时(点P运动到点C),S△ABP=16
∴AB•BC=16
∴×4×BC=16
∴BC=8
∴长方形的长为8,宽为4.
(2)当t=a时,S△ABP=8=×16
即点P此时在BC的中点处
∴PC=BC=×8=4
∴2(6﹣a)=4
∴a=4
∵BP=PC=4
∴m=BP÷a=4÷4=1,
当t=b时,S△ABP=AB•AP=4
∴×4×AP=4,AP=2
∴b=13﹣2=11;
课程小结
本节重点讲解常考题型即一次函数动点类综合题,着重讲解几何中解决动点问题的思路,讲解过程中需让学生学会如何运用数形结合思想解决问题,学会动中求静。
课后作业
【基础】
1.如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=15cm,BC=21cm,点M从点A开始,沿边AD向点D运动,速度为1cm/s;点N从点C开始,沿边CB向点B运动,速度为2cm/s、点M、N分别从点A、C出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.
(1)当t为何值时,四边形MNCD是平行四边形?
(2)当t为何值时,四边形MNCD是等腰梯形?
【答案】(1) t=5时,四边形MNCD是平行四边形
(2)t=9时,四边形MNCD是等腰梯形
【解析】
(1)∵MD∥NC,当MD=NC,即15-t=2t,t=5时,四边形MNCD是平行四边形;
(2)作DE⊥BC,垂足为E,则CE=21-15=6,当CN-MD=12时,即2t-(15-t)=12,t=9时,四边形MNCD是等腰梯形
【巩固】
D
M
A
B
C
N
2.正方形边长为4,、分别是、上的两个动点,当点在上运动时,保持和垂直,设,梯形的面积为,求与之间的函数关系式;当点运动到什么位置时,四边形面积最大,并求出最大面积
解析:
,
,
,
,
当时,取最大值,最大值为10.
拔高:
3.如图,已知中,厘米,厘米,点为的中点.
(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动
①若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与全等?
A
Q
C
D
B
P
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?
解:(1)①∵秒, ∴厘米,
∵厘米,点为的中点, ∴厘米.
又∵厘米, ∴厘米, ∴.
又∵, ∴, ∴.
②∵, ∴, 又∵,,则,
∴点,点运动的时间秒, ∴厘米/秒。
(2)设经过秒后点与点第一次相遇, 由题意,得,解得秒.
∴点共运动了厘米. ∵,∴点、点在边上相遇,
∴经过秒点与点第一次在边上相遇.
15 / 15
展开阅读全文