资源描述
第1课时 乘方
滑兴豪
教学目标
1.知识与技能
(1)正确理解乘方、幂、指数、底数等概念.
(2)会进行有理数乘方的运算.
2.过程与方法
通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化思想.
3.情感态度与价值观
培养探索精神,体验小组交流、合作学习的重要性.
重、难点与关键
1.重点:正确理解乘方的意义,掌握乘方运算法则.
2.难点:正确理解乘方、底数、指数的概念,并合理运算.
3.关键:弄清底数、指数、幂等概念,注意区别-an与(-a)n的意义.
教学过程
一、创设情境导入新课
大家听说过国际象棋吗?简单介绍国际象棋的产生,通过叙述导入新课并播放国际象棋棋盘图片,师生互动探究新知
二、新授
边长为a的正方形的面积是a·a,棱长为a的正方体的体积是a·a·a.
a·a简记作a2,读作a的平方(或二次方).
a·a·a简记作a3,读作a的立方(或三次方).
一般地,几个相同的因数a相乘,记作an.即=an
这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.
在an中,a叫底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂.
例如,在94中,底数是9,指数是4,94读作9的4次方,或9的4次幂,它表示4个9相乘,即9×9×9×;又如(-2)4的底数是-2,指数是4,读作-2的4次方(或-2的4次幂),它表示(-2)×(-2)×(-2)×(-2).
思考:32与23有什么不同?(-2)3与-23的意义是否相同?其中结果是否一样?(-2)4与-24呢?()2与呢?
答:32的底数是3,指数是2,读作3的2次幂,表示3×3,结果是9;23的底数是2,指数是3,读作2的3次幂,表示2×2×2,结果是8.
(-2)3的底数是-2,指数是3,读作-2的3次幂,表示(-2)×(-2)×(-2),结果是-8;-23的底数是2,指数是3,读作2的3次幂的相反数,表示为-(2×2×2),结果是-8.
(-2)3与-23的意义不相同,其结果一样.
(-2)4的底数是-2,指数是4,读作-2的四次幂,表示
(-2)×(-2)×(-2)×(-2),
结果是16;-24的底数是2,指数是4,读作2的4次幂的相反数,表示为
-(2×2×2×2),其结果为-16.w w w .x k b 1.c o m
(-2)4与-24的意义不同,其结果也不同.
()2的底数是,指数是2,读作的二次幂,表示×,结果是;表示32与5的商,即,结果是.
因此,当底数是负数或分数时,一定要用括号把底数括起来.
一个数可以看作这个数本身的一次方,例如5就是51,指数1通常省略不写.
因为an就是n个a相乘,所以可以利用有理数的乘方运算来进行有理数的乘方运算.
例1:计算:
(1)(-4)3; (2)(-2)4; (3)(-)5;
(4)33; (5)24; (6)(-)2.
解:(1)(-4)3=(-4)×(-4)×(-4)=-64
(2)(-2)4=(-2)×(-2)×(-2)×(-2)=16
(3)(-)5=(-)×(-)×(-)×(-)×(-)=-w w w .x k b 1.c o m
(4)33=3×3×3=27
(5)24=2×2×2×2=16
(6)(-)2=(-)×(-)=
从例1,你能发现正数的幂、负数的幂的正负有什么规律?
底数为正数时,不论指数是偶数还是奇数,其结果都是正数.
若底数为负数,当指数是偶数时,其结果是正数,当指数是奇数时其结果为负数.
实际上这可以根据有理数的乘法法则,积的符号由负因数的个数来确定,负因数是奇数个时,积为负数,负因数个数为偶数时,积为正.
因此,可以得出:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何非零次幂都是正数;0的任何非零次幂都是0.
三、巩固练习
1.课本第52页练习1、2.
2.补充练习.
(1)下面各式计算正确的是( ).
A.-22=-4 B.-(-2)2=4 C.(-3)2=6 D.(-3)3=1
(2)下列各式是否正确,若有错误,请改正过来.xkb1.c
①∵43=4×3=13,34=3×4=12,∴43=34
②∵(-3)2=-3×3=-9,-32=-3×3=-9,∴(-3)2=-92
(3)如果(-2)m>0,则(-1)m=_______;如果(-)n<0,则(-1)n=_____.
四、课堂小结
正确理解乘方的意义,a n表示n个a相乘的积.注意(-a)n与-a n 两者的区别及相互关系:(-a)n的底数是-a,表示n个-a相乘的积;-a n底数是a,表示n个a相乘的积的相反数.当n为偶数时,(-a)n与-a n互为相反数,当n为奇数时,(-a)n与-a n相等.
五、作业布置
1.课本第47页习题1.5第1题,第48页第11、12题.
2.选用课时作业设计
展开阅读全文