收藏 分销(赏)

七桥问题及其证明.doc

上传人:pc****0 文档编号:9444415 上传时间:2025-03-26 格式:DOC 页数:3 大小:51KB
下载 相关 举报
七桥问题及其证明.doc_第1页
第1页 / 共3页
七桥问题及其证明.doc_第2页
第2页 / 共3页
点击查看更多>>
资源描述
七桥问题及其证明 七桥问题对很多人来说并不是陌生的名词,尤其当它已经被写进了小学数学课本……不过,此处还是再来啰嗦地介绍一下七桥问题到底是怎样的一个命题。     传说在18世纪普鲁士的哥尼斯堡城,有一条叫做普雷格尔的河,河中间有两个岛,有七座桥把这两个岛与河岸相连,就像下面这个示意图里左图给出的一样。市民们饭后茶余就在讨论,能不能不重复的经过每一座桥而回到出发点呢。这个问题也可以被简化成右图是否能够被一笔画的问题。     大数学家欧拉思考过后认为,市民们一直在找寻的那条路径是不存在的,把每座桥看成图的一个边(右图),想要不重复的经过每一条边而回到原点,则每个顶点必须有偶数条边与之相连,才能满足从一条边来从另一条边出。用图论的语言来说,一个非空连通图是Euler图当且仅当它没有奇度顶点。     这里Euler图指的是有Euler闭迹的图,而Euler闭迹是,经过图G的每条边恰好一次的闭迹。有了这样的定义,上面的“七桥问题一笔画是不可能的”论证过程可以这样表述:设图G是Euler图,C是G中一个Euler闭迹。对G中任一个顶点v,v必在C上出现。因C每经过v一次,就有两条与V关联的边被使用。设C经过v共k次,则C经过了2k条与v关联的边,故v的度为2k(节点v的度指图G中与v相连的边的数量)          细心而学究的人会发现,上面仅仅是对命题的必要性证明,那么,充分性的证明呢?当一个非空连通图G的每个顶点都是偶度顶点,那图G就有Euler闭迹吗?直接证明这个比较困难,可以用反证法来证明:     无妨设图G的顶点个数n >1。因G连通,故至少有一条边。假设图G无奇度顶点,但它不是Euler图。令S = {G | G是至少有一条边的n阶连通图,无奇度顶点,且不是Euler图},则S非空。取S中边数最少的一个,记为G0。因G0无奇度顶点,故G0中顶点的度至少为2,因此G0含有圈,从而含有闭迹。设C是中一条最长的闭迹。由假设,C不是G0的Euler闭迹。因此G0中将C的边去掉后必有一个连通分支至少含有一条边。记这个连通分支为G1。由于C是闭迹,故G1中没有奇度顶点,且G1的边少于G0的边。由G0的选择可知,G1必有Euler闭迹,记为C1。因此C+C1是的一条闭迹,且它比C更长,这与C的选取矛盾。证毕。           是不是看的稀里糊涂呢?其实仔细想想不难理解,考虑所有节点度之和为偶数,则除去一个Euler闭迹后,剩下的节点度之和还是偶数,说明还有闭迹……最后可知整个图便只有整个一个最大的闭迹就是Euler闭迹了~
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服