收藏 分销(赏)

第25题综合题专题.doc

上传人:pc****0 文档编号:9418794 上传时间:2025-03-25 格式:DOC 页数:21 大小:2.67MB 下载积分:10 金币
下载 相关 举报
第25题综合题专题.doc_第1页
第1页 / 共21页
第25题综合题专题.doc_第2页
第2页 / 共21页


点击查看更多>>
资源描述
一、与平移、轴反射、旋转等图形变换有关的综合题 1、如图4,正方形OABC与正方形ODEF放置在直线l上,连接AD,CF,此时AD=CF,AD⊥CF成立. (1)正方形ODEF绕O点逆时针旋转一定的角度,如图5,试判断AD与CF还相等吗?若成立,请证明;若不成立,请说明理由. (2)正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,AD与OC的交点为G,如图6,求证:AD⊥CF. (3)在(2)小题的条件下,当AO=3,OD=时,求线段CG的长. 2、如图1,的边在直线上,,且;的边也在直线上,边与边重合,且. (1)在图1中,请你通过观察、测量,猜想并写出与所满足的数量关系和位置关系; (2)将沿直线向左平移到图2的位置时,交于点,连结,.猜想并写出与所满足的数量关系和位置关系,请证明你的猜想; (3)将沿直线向左平移到图3的位置时,的延长线交的延长线于点,连结,.你认为(2)中所猜想的与的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由. 3、如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a的异侧,BM⊥直线a于点M.CN⊥直线a于点N,连接PM,PN. (1)延长MP交CN于点E(如图2). ①求证:△BPM≌△CPE; ②求证:PM=PN; (2)若直线a绕点A旋转到图3的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由; (3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN的形状及此时PM=PN还成立吗?不必说明理由. 4、把两个全等的等腰直角三角形ABC和EFG(其直角边长均为4)叠放在一起(如图①),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点逆时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②). (1)在上述旋转过程中,BH与CK有怎样的数量关系?四边形CHGK的面积有何变化?证明你发现的结论;(要有辅助线哟!) (2)连接HK,在上述旋转过程中,设BH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围; (3)在(2)的前提下,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的,若存在,求出此时x值;若不存在,说明理由. 5、如图1,在等边△ABC中,点E从顶点A出发,沿AB的方向运动,同时,点D从顶点B出发,沿BC的方向运动,它们的速度相同,当点E到达点B时, D、E两点同时停止运动. (1)求证:CE=AD; (2)连接AD、CE交于点M,则在D、E运动的过程中,∠CMD变化吗?若变化,则说明理由;若不变,则求出它的度数; (3)如图2,若点D从顶点B出发后,沿BC相反的方向运动,其它条件不变. 求证:CE=DE. 二、与圆有关的综合题 1、.如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B两点,点P在优弧上. (1)求出A,B两点的坐标; (2)试确定经过A、B且以点P为顶点的抛物线解析式; (3)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.   2、如图,⊙O的直径FD⊥弦AB于点H,E是上一动点,连结FE并延长交AB的延长线于点C,AB=8,HD=2. (1)求⊙O的直径FD; (2)在E点运动的过程中,EF•CF的值是否为定值?若是,求出其定值;若不是,请说明理由; (3)当E点运动到的中点时,连接AE交DF于点G,求△FEA的面积. 3、如图,PA为⊙O的切线,A为切点,直线PO交⊙O与点E,F过点A作PO的垂线AB垂足为D,交⊙O与点B,延长BO与⊙O交与点C,连接AC,BF. (1)求证:PB与⊙O相切; (2)试探究线段EF,OD,OP之间的数量关系,并加以证明; (3)若AC=12,tan∠F=,求cos∠ACB的值. 4、如图,已知是的直径,点在上,过点的直线与的延长线交于点,,. (1)求证:是的切线; (2)求证:; (3)点是的中点,交于点,若,求的值.   5、如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交斜边AB于点M,若H是AC的中点,连接MH. (1)求证:MH为⊙O的切线. (2)若MH=,tan∠ABC=,求⊙O的半径. (3)在(2)的条件下分别过点A、B作⊙O的切线,两切线交于点D,AD与⊙O相切于N点,过N点作NQ⊥BC,垂足为E,且交⊙O于Q点,求线段NQ的长度. 与平移、轴反射、旋转等图形变换有关的综合题参考答案 一、综合题 1、略 2、(1);.………………………… (2分) (2);……………………………… (1分). 证明:①由已知,得,,. 又,.. 在和中, ,,, ,.………… (2分) ②如图3,延长交于点. ,. 在中,,又, . ..………………… (2分) (3)成立.…………………………………… ………………… (1分) 证明:①如图4,,. 又,.. 在和中, ,,, ..………(2分) ②如图4,延长交于点,则. ,. 在中,, .. . 3、【考点】旋转的性质;全等三角形的判定;矩形的判定. 【专题】几何综合题;压轴题. 【分析】(1)①根据平行线的性质证得∠MBP=∠ECP再根据BP=CP,∠BPM=∠CPE即可得到; ②由△BPM≌△CPE,得到PM=PE则PM=ME,而在Rt△MNE中,PN=ME,即可得到PM=PN. (2)证明方法与②相同. (3)四边形MBCN是矩形,则PM=PN成立. 【解答】(1)证明:①如图2: ∵BM⊥直线a于点M,CN⊥直线a于点N, ∴∠BMA=∠CNM=90°, ∴BM∥CN, ∴∠MBP=∠ECP, 又∵P为BC边中点, ∴BP=CP, 又∵∠BPM=∠CPE, ∴△BPM≌△CPE, ②∵△BPM≌△CPE, ∴PM=PE ∴PM=ME, ∴在Rt△MNE中,PN=ME, ∴PM=PN. (2)解:成立,如图3. 证明:延长MP与NC的延长线相交于点E, ∵BM⊥直线a于点M,CN⊥直线a于点N, ∴∠BMN=∠CNM=90° ∴∠BMN+∠CNM=180°, ∴BM∥CN ∴∠MBP=∠ECP, 又∵P为BC中点, ∴BP=CP, 又∵∠BPM=∠CPE, 在△BPM和△CPE中, , ∴△BPM≌△CPE, ∴PM=PE, ∴PM=ME, 则Rt△MNE中,PN=ME, ∴PM=PN. (3)解:如图4, 四边形M′BCN′是矩形, 根据矩形的性质和P为BC边中点,得到△M′BP≌△N′CP, 得PM′=PN′成立.即“四边形MBCN是矩形,则PM=PN成立”. 【点评】本题考查旋转的性质.旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变. 4、(1)BH=CK,四边形CHGK的面积不变; (2)x2-2x+4, 0<x<4; (3)当x=1或x=3时,△GHK的面积均等于△ABC的面积的 【解析】(1)在上述旋转过程中,BH=CK,四边形CHGK的面积不变 连接CG, ∵△ABC为等腰直角三角形,O(G)为其斜边中点,∴CG=BG,CG⊥AB,∴∠ACG=∠B=45°,∵∠BGH与∠CGK均为旋转角,∴∠BGH=∠CGK,在△BGH与△CGK中,∠B=∠KCG,BG=CG, ∠BCG=∠CGK∴△BGH≌△CGK(ASA),∴BH=CK,S△BGH=S△CGK.∴S四边形CHGK=S△CHG+S△CGK=S△CHG+S△BGH=S△ABC=××4×4=4即:S四边形CHGK的面积为4,是一个定值,在旋转过程中没有变化; (2)∵AC=BC=4,Bk=x,∴CH=4-x,CK=x,连接HK. 由S△GHK=S四边形CHGK-S△CHK,得y=4-x(4-x)=x2-2x+4 由0°<α<90°, 得到BH最大=BC=4,∴0<x<4; (3)存在.根据题意,得x2-2x+4=×8 解这个方程,得x1=1,x2=3, 即:当x=1或x=3时,△GHK的面积均等于△ABC的面积的. 5、 与圆有关综合题参考答案 一、综合题 1、【考点】圆的综合题. 【分析】(1)根据垂径定理可得出AH=BH,然后在直角三角形ACH中可求出AH的长,再根据C点的坐标即可得出A、B两点的坐标. (2)根据抛物线和圆的对称性,即可得出圆心C和P点必在抛物线的对称轴上,因此可得出P点的坐标为(1,3).然后可用顶点式二次函数通式来设抛物线的解析式.根据A或B的坐标即可确定抛物线的解析式. (3)如果OP、CD互相平分,那么四边形OCPD是平行四边形.因此PC平行且相等于OD,那么D点在y轴上,且坐标为(0,2).然后将D点坐标代入抛物线的解析式中即可判定出是否存在这样的点. 【解答】解:(1)如图,作CH⊥AB于点H,连接OA,OB, ∵CH=1,半径CB=2 ∴HB=, 故A(1﹣,0),B(1+,0). (2)由圆与抛物线的对称性可知抛物线的顶点P的坐标为(1,3), 设抛物线解析式y=a(x﹣1)2+3, 把点B(1+,0)代入上式,解得a=﹣1; ∴y=﹣x2+2x+2. (3)假设存在点D使线段OP与CD互相平分,则四边形OCPD是平行四边形 ∴PC∥OD且PC=OD. ∵PC∥y轴, ∴点D在y轴上. 又∵PC=2, ∴OD=2,即D(0,2). 又D(0,2)满足y=﹣x2+2x+2, ∴点D在抛物线上 ∴存在D(0,2)使线段OP与CD互相平分. 【点评】本题是综合性较强的题型,所给的信息比较多,解决问题所需的知识点也较多,解题时必须抓住问题的关键点.二次函数和圆的综合,要求对圆和二次函数的性质在掌握的基础上灵活讨论运动变化,对解题技巧和解题能力的要求上升到一个更高的台阶.要求学生解题具有条理,挖出题中所隐含的条件,会分析问题,找出解决问题的突破口. 2、【考点】圆的综合题. 【分析】(1)连接OA,由垂径定理得到AH=AB=4,设OA=x,在Rt△OAH中,根据勾股定理列方程即可得到结论; (2)根据垂径定理得到,根据圆周角定理得到∠BAF=∠AEF,推出△FAE∽△FCA,根据相似三角形的性质得到,推出AF2=EF•CF,代入数据即可得到结论; (3)连接OE,由E点是的中点,得到∠FAE=45°,∠EOF=90°,于是得到∠EOH=∠AHG,推出△OGE∽△HGA,根据相似三角形的性质得到,求得OG=,得到FG=OF+OG=,根据三角形的面积公式即可得到结论. 【解答】解:(1)连接OA, ∵直径FD⊥弦AB于点H, ∴AH=AB=4, 设OA=x, 在Rt△OAH中,AO2=AH2+(x﹣2)2, 即x2=42+(x﹣2)2, ∴x=5, ∴DF=2OA=10; (2)是, ∵直径FD⊥弦AB于点H, ∴, ∴∠BAF=∠AEF, ∵∠AFE=∠CFA, ∴△FAE∽△FCA, ∴, ∴AF2=EF•CF, 在Rt△AFH中, AF2=AH2+FH2=44+82=80, ∴EF•CF=80; (3)连接OE, ∵E点是的中点, ∴∠FAE=45°,∠EOF=90°, ∴∠EOH=∠AHG, ∵∠OGE=∠HGA, ∴△OGE∽△HGA, ∴, 即=, ∴OG=, ∴FG=OF+OG=, ∴S△FEA=S△EFG+S△AFG=FG•OE+FG•AH=×(4+5)=30. 【点评】本题考查了垂径定理,勾股定理相似三角形的判定和性质,圆周角定理,正确的作出辅助线是解题的关键. 3、【考点】圆的综合题. 【分析】(1)连接OA,由OP垂直于AB,利用垂径定理得到D为AB的中点,即OP垂直平分AB,可得出AP=BP,再由OA=OB,OP=OP,利用SSS得出三角形AOP与三角形BOP全等,由PA为圆的切线,得到OA垂直于AP,利用全等三角形的对应角相等及垂直的定义得到OB垂直于BP,即PB为圆O的切线; (2)由一对直角相等,一对公共角,得出三角形AOD与三角形OAP相似,由相似得比例,列出关系式,由OA为EF的一半,等量代换即可得证. (3)连接BE,构建直角△BEF.在该直角三角形中利用锐角三角函数的定义、勾股定理可设BE=x,BF=2x,进而可得EF=x;然后由面积法求得BD=x,所以根据垂径定理求得AB的长度,在Rt△ABC中,根据勾股定理易求BC的长;最后由余弦三角函数的定义求解. 【解答】(1)证明:连接OA, ∵PA与圆O相切, ∴PA⊥OA,即∠OAP=90°, ∵OP⊥AB, ∴D为AB中点,即OP垂直平分AB, ∴PA=PB, ∵在△OAP和△OBP中, , ∴△OAP≌△OBP(SSS), ∴∠OAP=∠OBP=90°, ∴BP⊥OB, 则直线PB为圆O的切线;   (2)答:EF2=4DO•PO. 证明:∵∠OAP=∠ADO=90°,∠AOD=∠POA, ∴△OAD∽△OPA, ∴=,即OA2=OD•OP, ∵EF为圆的直径,即EF=2OA, ∴EF2=OD•OP,即EF2=4OD•OP;   (3)解:连接BE,则∠FBE=90°. ∵tan∠F=, ∴=, ∴可设BE=x,BF=2x, 则由勾股定理,得 EF==x, ∵BE•BF=EF•BD, ∴BD=x. 又∵AB⊥EF, ∴AB=2BD=x, ∴Rt△ABC中,BC=x, AC2+AB2=BC2, ∴122+(x)2=(x)2, 解得:x=4, ∴BC=4×=20, ∴cos∠ACB===. 【点评】此题考查了切线的判定与性质,相似及全等三角形的判定与性质以及锐角三角函数关系等知识,熟练掌握切线的判定与性质是解本题的关键.   4、解:(1), 又, . 又是的直径, , ,即, 而是的半径, 是的切线. (2), , 又, . (3)连接,   点是的中点,,, 而,,而, ,,, 又是的直径,, . ,. 5、解:(1)连接OH、OM, ∵H是AC的中点,O是BC的中点, ∴OH是△ABC的中位线,∴OH∥AB, ∴∠COH=∠ABC,∠MOH=∠OMB, 又∵OB=OM,∴∠OMB=∠MBO,∴∠COH=∠MOH, 在△COH与△MOH中,△COH≌△MOH(SAS), ∴∠HCO=∠HMO=90°,∴MH是⊙O的切线; (2)∵MH、AC是⊙O的切线,∴HC=MH=,∴AC=2HC=3, ∵tan∠ABC=,∴,∴BC=4,∴⊙O的半径为2; (3)连接OA、CN、ON,OA与CN相交于点I, ∵AC与AN都是⊙O的切线, ∴AC=AN,AO平分∠CAD,∴AO⊥CN, ∵AC=3,OC=2, ∴由勾股定理可求得:AO=, ∵AC•OC=AO•CI,∴CI=. ∴由垂径定理可求得:CN=, 设OE=x,由勾股定理可得:CN2﹣CE2=ON2﹣OE2, ∴﹣(2+x)2=4﹣x2,∴x=,∴CE=, 由勾股定理可求得:EN=,∴由垂径定理可知:NQ=2EN=.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服