收藏 分销(赏)

二次函数试题及答案[1]_3.doc

上传人:pc****0 文档编号:9417519 上传时间:2025-03-25 格式:DOC 页数:53 大小:3.78MB
下载 相关 举报
二次函数试题及答案[1]_3.doc_第1页
第1页 / 共53页
二次函数试题及答案[1]_3.doc_第2页
第2页 / 共53页
点击查看更多>>
资源描述
二次函数试题 一、选择题 1、(2009年台湾)向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx。若此炮弹在第7秒与第14秒时的高度相等,则再下列哪一个时间的高度是最高的? (A) 第8秒 (B) 第10秒 (C) 第12秒 (D) 第15秒 。 2、(2009年桂林市、百色市)二次函数的最小值是( ). A.2 B.1 C.-3 D. 3、(2009年上海市)抛物线(是常数)的顶点坐标是( ) A. B. C. D. 4、(2009年陕西省)根据下表中的二次函数的自变量x与函数y的对应值,可判断二次函数的图像与x轴 【 】 x … -1 0 1 2 … y … -1 -2 … A.只有一个交点 B.有两个交点,且它们分别在y轴两侧 C.有两个交点,且它们均在y轴同侧 D.无交点 5、(2009威海)二次函数的图象的顶点坐标是(  ) A. B. C. D. 6、(2009湖北省荆门市)函数y=ax+1与y=ax2+bx+1(a≠0)的图象可能是( ) A.  B. C.     D. 7、(2009年贵州黔东南州)抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是( ) A、y=x2-x-2 B、y= C、y= D、y= 8、(2009年齐齐哈尔市)已知二次函数的图象如图所示,则下列结论:;方程的两根之和大于0;随的增大而增大;④,其中正确的个数() A.4个 B.3个 C.2个 D.1个 x y O 1 9、(2009年深圳市)二次函数的图象如图2所示,若点A(1,y1)、B(2,y2)是它图象上的两点,则y1与y2的大小关系是( ) A. B. C. D.不能确定 10、(2009烟台市)二次函数的图象如图所示,则一次函数与反比例函数在同一坐标系内的图象大致为( ) y x O y x O B. C. y x O A. y x O D. 1 O x y 11、(2009年甘肃庆阳)图6(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图6(2)建立平面直角坐标系,则抛物线的关系式是(  )A. B. C. D. 图6(1) 图6(2) 12、(2009年甘肃庆阳)将抛物线向下平移1个单位,再向左平移2个单位得到的抛物线是(  ) 13、(2009年广西南宁)已知二次函数()的图象如图4所示,有下列四个结论:④,其中正确的个数有( ) A.1个 B.2个 C.3个 D.4个 1 图4 O x y 3 14、(2009年鄂州)已知=次函数y=ax+bx+c的图象如图.则下列5个代数式:ac,a+b+c,4a-2b+c,2a+b,2a-b中,其值大于0的个数为( ) A.2 B 3 C、4 D、5 15、(2009年孝感)将函数的图象向右平移a个单位,得到函数的图象,则a的值为 A.1 B.2 C.3 D.4 16、(2009年烟台市)二次函数的图象如图所示,则一次函数与反比例函数在同一坐标系内的图象大致为( ) 1 O x y y x O y x O B. C. y x O A. y x O D. 17、(2009年嘉兴市)已知,在同一直角坐标系中,函数与的图象有可能是(  ) A. B. C. D. 18、 在平面直角坐标系中,先将抛物线关于轴作轴对称变换,再将所得的抛物线关于轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( ) A. B. CD. 19、(2009年衢州)二次函数的图象上最低点的坐标是( ) 20、(2009年广州市)二次函数的最小值是( ) 21、(2009年济宁市)小强从如图所示的二次函数 的图象中,观察得出了下面五条信息:(1);(2) ; (3) ;(4) ; (5). 你认为其中 正确信息的个数有( ) A.2个 B.3个 C.4个 D.5个 22.(2009宁夏)二次函数的图象1 1 O x y 如图所示,对称轴是直线,则下列四个结论错误的 是( )A. B. C. D. 23、(2009年南充)抛物线的对称轴是直线( ) 24、(2009年兰州)在同一直角坐标系中,函数和函数(是常数,且)的图象可能是 25、(2009年遂宁)把二次函数用配方法化成的形式 26、要得到二次函数的图象,需将的图象( ). A.向左平移2个单位,再向下平移2个单位B.向右平移2个单位,再向上平移2个单位 C.向左平移1个单位,再向上平移1个单位D.向右平移1个单位,再向下平移1个单位 27、(2009湖北省荆门市)函数取得最大值时,______. 28、(2009年淄博市) 请写出符合以下三个条件的一个函数的解析式 . ①过点;②当时,y随x的增大而减小;③当自变量的值为2时,函数值小于2. 29二次函数的图象关于原点对称的图象的解析式是_________________。 二、填空题 1、(2009年北京市)若把代数式化为的形式,其中为常数,则= . 2、(2009年安徽)已知二次函数的图象经过原点及点(,),且图象与x轴的另一交点到原 点的距离为1,则该二次函数的解析式为 3、已知二次函数的图象经过原点及点(,),且图象与x轴的另一交点到原点的距离为1,则该二次函数的解析式为 . 4、(2009年郴州市)抛物线的顶点坐标为__________. 5、(2009年上海市)12.将抛物线向上平移一个单位后,得以新的抛物线,那么新的抛物线的表达式是 . 6、(2009年内蒙古包头)已知二次函数的图象与轴交于点、,且,与轴的正半轴的交点在的下方.下列结论:①;②;③;④.其中正确结论的个数是 个. 7、(2009襄樊市)抛物线的图象如图6所示,则此抛物线的解析式为 . y x O 3 x=1 图6 8、(2009湖北省荆门市)函数取得最大值时,______. 9、(2009年淄博市) 请写出符合以下三个条件的一个函数的解析式 . ①过点; ②当时,y随x的增大而减小; ③当自变量的值为2时,函数值小于2. 10、(2009年贵州省黔东南州)二次函数的图象关于原点O(0, 0)对称的图象的解析式是_________________。 11、(2009年齐齐哈尔市)当_____________时,二次函数有最小值. 12、(2009年娄底)如图7,⊙O的半径为2,C1是函数y=x2的图象,C2是函数y=-x2的图象,则阴影部分的面积是 . 13、(2009年甘肃庆阳)图12为二次函数的图象,给出下列说法: ①;②方程的根为;③;④当时,y随x值的增大而增大;⑤当时,. 其中,正确的说法有 .(请写出所有正确说法的序号) 14、(2009年鄂州)把抛物线y=ax+bx+c的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是y=x-3x+5,则a+b+c=__________ 15、(2009白银市)抛物线的部分图象如图8所示,请写出与其关系式、图象相关的2个正确结论:         ,          .(对称轴方程,图象与x正半轴、y轴交点坐标例外) 16、(2009年甘肃定西)抛物线的部分图象如图8所示,请写出与其关系式、图象相关的2个正确结论:         ,          .(对称轴方程,图象与x正半轴、y轴交点坐标例外) 17、(2009年包头)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值 是 cm2. 18、(2009年包头)已知二次函数的图象与轴交于点、,且,与轴的正半轴的交点在的下方.下列结论:①;②;③;④.其中正确结论的个数是 个. 19、(2009年莆田)出售某种文具盒,若每个获利元,一天可售出个,则当 元时,一天出售该种文具盒的总利润最大. 20、(2009年本溪)如图所示,抛物线()与轴的两个交点分别为和,当时,的取值范围是 . 【 21.(2009年湖州)已知抛物线(>0)的对称轴为直线,且经过点试比较和的大小: _(填“>”,“<”或“=”) 22、(2009年兰州)二次函数的图象如图12所示,点位于坐标原点, 点,,,…, 在y轴的正半轴上,点,, ,…, 在二次函数位于第一象限的图象上, 若△,△,△,…,△ 都为等边三角形,则△的边长= . 23、(2009年北京市)若把代数式化为的形式,其中为常数,则= . 24.(2009年咸宁市)已知、是抛物线上位置不同的两点,且关于抛物线的对称轴对称,则点、的坐标可能是_____________.(写出一对即可) 25、(2009年安徽)已知二次函数的图象经过原点及点(,),且图象与x轴的另一交点到原 点的距离为1,则该二次函数的解析式为 . 26、(2009年黄石市)若抛物线与的两交点关于原点对称,则分别为 . 27、(2009 黑龙江大兴安岭)当 时,二次函数有最小值. 三、解答题 1、(2009年株洲市)如图1,中,,,点在线段上运动,点、分别在线段、上,且使得四边形是矩形.设的长为,矩形的面积为,已知是的函数,其图象是过点(12,36)的抛物线的一部分(如图2所示). (1)求的长; (2)当为何值时,矩形的面积最大,并求出最大值. 为了解决这个问题,孔明和研究性学习小组的同学作了如下讨论: 张明:图2中的抛物线过点(12,36)在图1中表示什么呢? 李明:因为抛物线上的点是表示图1中的长与矩形面积的对应关系,那么,(12,36)表示当时,的长与矩形面积的对应关系. 赵明:对,我知道纵坐标36是什么意思了! 孔明:哦,这样就可以算出,这个问题就可以解决了. 请根据上述对话,帮他们解答这个问题. O 图1 图2 2、(2009年株洲市)已知为直角三角形,,,点、在轴上,点坐标为(,)(),线段与轴相交于点,以(1,0)为顶点的抛物线过点、. (1)求点的坐标(用表示); (2)求抛物线的解析式; (3)设点为抛物线上点至点之间的一动点,连结并延长交于点,连结 并延长交于点,试证明:为定值. 3、(2009年重庆市江津区)某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。 (1)请建立销售价格y(元)与周次x之间的函数关系; (2)若该品牌童装于进货当周售完,且这种童装每件进价z(元)与周次x之间的关系为, 1≤ x ≤11,且x为整数,那么该品牌童装在第几周售出后,每件获得利润最大?并求最大利润为多少? 4、(2009年重庆市江津区)如图,抛物线与x轴交与A(1,0),B(- 3,0)两点, (1)求该抛物线的解析式; (2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由. (3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?,若存在,求出点P的坐标及△PBC的面积最大值.若没有,请说明理由. 第26题图 5、(2009年滨州)某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题: (1)若设每件降价元、每星期售出商品的利润为元,请写出与的函数关系式,并求出自变量的取值范围; (2)当降价多少元时,每星期的利润最大?最大利润是多少? (3)请画出上述函数的大致图象. 6、(2009年滨州) 如图①,某产品标志的截面图形由一个等腰梯形和抛物线的一部分组成,在等腰梯形中,,.对于抛物线部分,其顶点为的中点,且过两点,开口终端的连线平行且等于. (1)如图①所示,在以点为原点,直线为轴的坐标系内,点的坐标为, 试求两点的坐标; (2)求标志的高度(即标志的最高点到梯形下底所在直线的距离); N B C D A M y x (第4题图①) ) O A B C D (第4题图②) )) ) 20cm 30cm 45° (3)现根据实际情况,需在标志截面图形的梯形部分的外围均匀镀上一层厚度为3cm的保护膜,如图②,请在图中补充完整镀膜部分的示意图,并求出镀膜的外围周长. 7、 (2009年四川省内江市)如图所示,已知点A(-1,0),B(3,0),C(0,t),且t>0,tan∠BAC=3,抛物线经过A、B、C三点,点P(2,m)是抛物线与直线的一个交点。 (1)求抛物线的解析式; (2)对于动点Q(1,n),求PQ+QB的最小值; (3)若动点M在直线上方的抛物线上运动, 求△AMP的边AP上的高h的最大值。 8、(2009仙桃)如图,已知抛物线y=x2+bx+c经过矩形ABCD的两个顶点A、B,AB平行于x轴,对角线BD与抛物线交于点P,点A的坐标为(0,2),AB=4. (1)求抛物线的解析式; (2)若S△APO=,求矩形ABCD的面积. y x D N M Q B C O P E A 9、(2009年长春)如图,直线分别与轴、轴交于两点,直线与交于点,与过点且平行于轴的直线交于点.点从点出发,以每秒1个单位的速度沿轴向左运动.过点作轴的垂线,分别交直线于两点,以为边向右作正方形,设正方形与重叠部分(阴影部分)的面积为(平方单位).点的运动时间为(秒). (1)求点的坐标.(1分) (2)当时,求与之间的函数关系式.(4分) (3)求(2)中的最大值.(2分) (4)当时,直接写出点在正方形内部时的取值范围.(3分) 10、(2009年郴州市) 如图11,已知正比例函数和反比例函数的图像都经过点M(-2,),且P(,-2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B. (1)写出正比例函数和反比例函数的关系式; (2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由; (3)如图12,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值. 图12 图11 10、(2009年常德市)已知二次函数过点A (0,),B(,0),C(). (1)求此二次函数的解析式; (2)判断点M(1,)是否在直线AC上? 图8 (3)过点M(1,)作一条直线与二次函数的图象交于E、F两点(不同于A,B,C三点),请自已给出E点的坐标,并证明△BEF是直角三角形. 11、(2009年陕西省) 如图,在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的坐标是(-1,2). (1)求点B的坐标; (2)求过点A、O、B的抛物线的表达式; (3)连接AB,在(2)中的抛物线上求出点P,使得S△ABP=S△ABO. 12、(2009年黄冈市)新星电子科技公司积极应对2008年世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线.由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次).公司累积获得的利润y(万元)与销售时间第x(月)之间的函数关系式(即前x个月的利润总和y与x之间的关系)对应的点都在如图所示的图象上.该图象从左至右,依次是线段OA、曲线AB和曲线BC,其中曲线AB为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线的一部分,且点A,B,C的横坐标分别为4,10,12 (1)求该公司累积获得的利润y(万元)与时间第x(月)之间的函数关系式; (2)直接写出第x个月所获得S(万元)与时间x(月)之间的函数关系式(不需要写出计算过程); (3)前12个月中,第几个月该公司所获得的利润最多?最多利润是多少万元? 13、(2009武汉)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨元(为正整数),每个月的销售利润为元. (1)求与的函数关系式并直接写出自变量的取值范围; (2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元? (3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元? 14、(2009武汉)如图,抛物线经过、两点,与轴交于另一点. (1)求抛物线的解析式; (2)已知点在第一象限的抛物线上,求点关于直线对称的点的坐标; (3)在(2)的条件下,连接,点为抛物线上一点,且,求点的坐标. y x O A B C 15、(2009年安顺)如图,已知抛物线与交于A(-1,0)、E(3,0)两点,与轴交于点B(0,3)。 (1) 求抛物线的解析式; (2) 设抛物线顶点为D,求四边形AEDB的面积; (3) △AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由。 16、(2009重庆綦江)如图,已知抛物线经过点,抛物线的顶点为,过作射线.过顶点平行于轴的直线交射线于点,在轴正半轴上,连结. (1)求该抛物线的解析式; (2)若动点从点出发,以每秒1个长度单位的速度沿射线运动,设点运动的时间为.问当为何值时,四边形分别为平行四边形?直角梯形?等腰梯形? x y M C D P Q O A B (3)若,动点和动点分别从点和点同时出发,分别以每秒1个长度单位和2个长度单位的速度沿和运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为,连接,当为何值时,四边形的面积最小?并求出最小值及此时的长. 17、(2009威海)O A B C l y x 如图,在直角坐标系中,点A,B,C的坐标分别为(-1,0),(3,0)。(0,3),过A,B,C三点的抛物线的对称轴为直线,D为对称轴上一动点. (1) 求抛物线的解析式; (2) 求当AD+CD最小时点的坐标; (3) 以点为圆心,以为半径作⊙A. ①证明:当AD+CD最小时,直线BD与⊙A相切. ②写出直线BD与⊙A相切时,D点的另一个坐标:___________. 18、(2009年内蒙古包头)已知二次函数()的图象经过点,,,直线()与轴交于点. (1)求二次函数的解析式; (2)在直线()上有一点(点在第四象限),使得为顶点的三角形与以为顶点的三角形相似,求点坐标(用含的代数式表示); (3)在(2)成立的条件下,抛物线上是否存在一点,使得四边形为平行四边形?若存在,请求出的值及四边形的面积;若不存在,请说明理由. y x O 19、(2009山西省太原市)已知,二次函数的表达式为.写出这个函数图象的对称轴和顶点坐标,并求图象与轴的交点的坐标. 20、(2009湖北省荆门市) 一开口向上的抛物线与x轴交于A(,0),B(m+2,0)两点,记抛物线顶点为C,且AC⊥BC. (1)若m为常数,求抛物线的解析式; (2)若m为小于0的常数,那么(1)中的抛物线经过怎么样的平移可以使顶点在坐标原点? (3)设抛物线交y轴正半轴于D点,问是否存在实数m,使得△BCD为等腰三角形?若存在,求出m的值;若不存在,请说明理由. O B A C D x y 第25题图 20、(2009年淄博市)如图,在平面直角坐标系中,正方形OABC的边长是2.O为坐标原点,点A在x的正半轴上,点C在y的正半轴上.一条抛物线经过A点,顶点D是OC的中点. (1)求抛物线的表达式; (2)正方形OABC的对角线OB与抛物线交于E点,线段FG过点E与x轴垂直,分别交x轴和线段BC于F,G点,试比较线段OE与EG的长度; O A B C D E y x F G H I J K (第24题) (3)点H是抛物线上在正方形内部的任意一点,线段IJ过点H与x轴垂直,分别交x轴和线段BC于I、J点,点K在y轴的正半轴上,且OK=OH,请证明△OHI≌△JKC. 21、(2009年贵州省黔东南州)凯里市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去。 (1)设每间包房收费提高x(元),则每间包房的收入为y1(元),但会减少y2间包房租出,请分别写出y1、y2与x之间的函数关系式。 (2)为了投资少而利润大,每间包房提高x(元)后,设酒店老板每天晚餐包房总收入为y(元),请写出y与x之间的函数关系式,求出每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明理由。 22、(2009年贵州省黔东南州)已知二次函数。 (1)求证:不论a为何实数,此函数图象与x轴总有两个交点。 (2)设a<0,当此函数图象与x轴的两个交点的距离为时,求出此二次函数的解析式。 (3)若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由。 23、(2009年江苏省)如图,已知二次函数的图象的顶点为.二次函数的图象与轴交于原点及另一点,它的顶点在函数的图象的对称轴上. (1)求点与点的坐标; (2)当四边形为菱形时,求函数的关系式. 24、(2009年浙江省绍兴市)定义一种变换:平移抛物线得到抛物线,使经过的顶点.设的对称轴分别交于点,点是点关于直线的对称点. (1)如图1,若:,经过变换后,得到:,点的坐标为,则①的值等于______________; ②四边形为( ) A.平行四边形 B.矩形 C.菱形 D.正方形 (2)如图2,若:,经过变换后,点的坐标为,求的面积; (3)如图3,若:,经过变换后,,点是直线上的动点,求点到点的距离和到直线的距离之和的最小值. 26、(2009年深圳市)已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上。 (1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式。(4分) (2)如图,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E。 图11 ①当△BDE是等腰三角形时,直接写出此时点E的坐标。 ②又连接CD、CP,△CDP是否有最大面积?若有,求出△CDP的最大面的最大面积和此时点P的坐标;若没有,请说明理由。 27、(2009年台州市)如图,已知直线交坐标轴于两点,以线段为边向上作正方形,过点的抛物线与直线另一个交点为. (1)请直接写出点的坐标; (2)求抛物线的解析式; (3)若正方形以每秒个单位长度的速度沿射线下滑,直至顶点落在轴上时停止.设正方形落在轴下方部分的面积为,求关于滑行时间的函数关系式,并写出相应自变量的取值范围; O A B C D E y x (4)在(3)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上两点间的抛物线弧所扫过的面积. 备用图 28、(2009年宁波市)如图,抛物线与轴相交于点A、B,且过点. (1)求的值和该抛物线顶点P的坐标; A B P x y O (第23题) C(5,4) (2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式. 29、(2009年义乌)如图,抛物线与轴的一个交点A在点(-2,0)和(-1,0)之间(包括这两点),顶点C是矩形DEFG上(包括边界和内部)的一个动点,则 (填“”或“”); 的取值范围是 30、(2009河池) O D B C A E 图12 如图12,已知抛物线交轴于A、B两点,交轴于点C,抛物线的对称轴交轴于点E,点B的坐标为(,0). (1)求抛物线的对称轴及点A的坐标; (2)在平面直角坐标系中是否存在点P, 与A、B、C三点构成一个平行四边形?若存在, 请写出点P的坐标;若不存在,请说明理由; (3)连结CA与抛物线的对称轴交于点D,在抛物线上是否存在 点M,使得直线CM把四边形DEOC分成面积相等的两部分? 若存在,请求出直线CM的解析式;若不存在,请说明理由. 31、(2009柳州) O x y A B C D 图11 如图11,已知抛物线()与轴的一个交点为,与y轴的负半轴交于点C,顶点为D. (1)直接写出抛物线的对称轴,及抛物线与轴的另一个交点A的坐标; (2)以AD为直径的圆经过点C. ①求抛物线的解析式; ②点在抛物线的对称轴上,点在抛物线上, 且以四点为顶点的四边形为平行四边形,求点的坐标. 32、(2009烟台市) 如图,抛物线与轴交于两点,与轴交于C点,且经过点,对称轴是直线,顶点是. (1) 求抛物线对应的函数表达式; (2) 经过两点作直线与轴交于点,在抛物线上是否存在这样的点,使以点为顶点的四边形为平行四边形?若存在,请求出点的坐标;若不存在,请说明理由; (3) 设直线与y轴的交点是,在线段上任取一点(不与重合),经过三点的圆交直线于点,试判断的形状,并说明理由; (4) 当是直线上任意一点时,(3)中的结论是否成立?(请直接写出结论). O B x y A M C 1 33、(2009恩施市)如图,在中,的面积为25,点为边上的任意一点(不与、重合),过点作,交于点.设,以为折线将翻折(使落在四边形所在的平面内),所得的与梯形重叠部分的面积记为. (1)用表示的面积; (2)求出时与的函数关系式; (3)求出时与的函数关系式; 34、.(2009年甘肃白银)[12分+附加4分]如图14(1),抛物线与x轴交于A、B两点,与y轴交于点C(0,).[图14(2)、图14(3)为解答备用图] (1)     ,点A的坐标为      ,点B的坐标为     ; (2)设抛物线的顶点为M,求四边形ABMC的面积; (3)在x轴下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由; (4)在抛物线上求点Q,使△BCQ是以BC为直角边的直角三角形. 图14(1)      图14(2)        图14(3) 35、(2009年甘肃庆阳)(10分)图19是二次函数的图象在x轴上方的一部分,若这段图象与x轴所围成的阴影部分面积为S,试求出S取值的一个范围. 图19 36(2009年甘肃庆阳)如图18,在平面直角坐标系中,将一块腰长为5的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(,0),点B在抛物线上. (1)点A的坐标为 ,点B的坐标为 ; (2)抛物线的关系式为 ; (3)设(2)中抛物线的顶点为D,求△DBC的面积; (4)将三角板ABC绕顶点A逆时针方向旋转90°,到达的位置.请判断点、是否在(2)中的抛物线上,并说明理由. 图18 37、(2009年广西南宁)如图14,要设计一个等腰梯形的花坛,花坛上底长米,下底长米,上下底相距米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等.设甬道的宽为米. (1)用含的式子表示横向甬道的面积; (2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽; (3)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元? 图14 38、(2009年鄂州)24、如图所示.某校计划将一块形状为锐角三角形ABC的空地进行生态环境改造.已知△ABC的边BC长120米,高AD长80米。学校计划将它分割成△AHG、△BHE、△GFC和矩形EFGH四部分(如图)。其中矩形EFGH的一边EF在边BC上.其余两个顶点H、G分别在边AB、AC上。现计划在△AHG上种草,每平方米投资6元;在△BHE、△FCG上都种花,每平方米投资10元;在矩形EFGH上兴建爱心鱼池,每平方米投资4元。 (1)当FG长为多少米时,种草的面积与种花的面积相等? (2)当矩形EFGH的边FG为多少米时,△ABC空地改造总投资最小?最小值为多少? 39、(2009年鄂州)如图所示,将矩形OABC沿AE折叠,使点O恰好落在BC上F处,以CF为边作正方形CFGH,延长BC至M,使CM=|CF—EO|,再以CM、CO为边作矩形CMNO (1)试比较EO、EC的大小,并说明理由 (2)令,请问m是否为定值?若是,请求出m的值;若不是,请说明理由 (3)在(2)的条件下,若CO=1,CE=,Q为AE上一点且QF=,抛物线y=mx2+bx+c经过C、Q两点,请求出此抛物线的解析式. (4)在(3)的条件下,若抛物线y=mx2+bx+c与线段AB交于点P,试问在直线BC上是否存在点K,使得以P、B、K为顶点的三角形与△AEF相似?若存在,请求直线KP与y轴的交点T的坐标?若不存在,请说明理由。 40、(2009年河南)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点. (1)直接写出点A的坐标,并求出抛物线的解析式; (2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD 向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E ①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长? ②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形? 请直接写出相应的t值. 41、如图,△OAB是边长为2的等边三角形,过点A的直线 (1) 求点E的坐标; (2) 求过 A、O、E三点的抛物线解析式; (3) 若点P是(2)中求出的抛物线AE段上一动点(不与A、E重合),设四边形OAPE的面积为S,求S的最大值。 42、(2009江西)如图,抛物线与轴相交于、两点(点在点的左侧),与轴相交于点,顶点为. (1)直接写出、、三点的坐标和抛物线的对称轴; (2)连接,与抛物线的对称轴交于点,点为线段上的一个动点,过点作交抛物线于点,设点的横坐标为; ①用含的代数式表示线段的长,并求出当为何值时,四边形为平行四边形? ②设的面积为,求与的函数关系式. 43、(2009年烟台市) 某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台. (1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围) (2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元? (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少? 44、(2009年烟台市)如图,抛物线与轴交于两点,与轴交于C点,且经过点,对称轴是直线,顶点是. (5) 求抛物线对应的函数表达式; (6) 经过两点作直线与轴交于点,在抛物线上是否存在这样的点,使以点为顶点的四边形为平行四边形?若存在,请求出点的坐标;若不存在,请说明理由; (7) 设直线与y轴的交点是,在线段上任取一点(不与重合),经过三点的圆交直线于点,试判断的形状,并说明理由; (8) 当是直线上任意一点时,(3)中的结论是否成立?(请直接写出结论). O B x y A M C 1 45、(2009年嘉兴市)如图,曲线C是函数在第一象限内的图象,抛物线是函数的图象.点()在曲线C上,且都是整数. (1)求出所有的点; (2)在中任取两点作直线,求所有不同直线的条数; (3)从(2)的所有直线中任取一条直线,求所取直线与抛物线有公共点的概率. 6 4 2 2 4 6 y x O
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服