收藏 分销(赏)

图形与证明--复习讲学稿答案.doc

上传人:仙人****88 文档编号:9120641 上传时间:2025-03-14 格式:DOC 页数:13 大小:247.66KB 下载积分:10 金币
下载 相关 举报
图形与证明--复习讲学稿答案.doc_第1页
第1页 / 共13页
图形与证明--复习讲学稿答案.doc_第2页
第2页 / 共13页


点击查看更多>>
资源描述
第一章《图形与证明(二)》 一、选择题: 1.若等腰三角形的一个内角为50°,则顶角为( D ) A.50°    B.100°   C.80° D.50°或80° 2.已知等腰△ABC中,AD⊥BC于点D,且AD=BC,则△ABC底角的度数为( C ) A.45o    B.75o   C.45o或15o D.60o 3.如图,矩形ABCD的对角线AC=8cm,∠AOD=120º,则AB的长为( D ) A.cm   B.2cm     C.2cm D.4cm 4.下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连结矩形四边中点得到的四边形是菱形;④正五边形既是轴对称图形又是中心对称图形.其中真命题共有( B ) A.1个   B.2个 C.3个    D.4个 5.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长( C ) 第3题 第5题 第6题 第7题 A.4 B.6 C.8  D.10 6.点P是正方形ABCD边AB上一点(不与A、B重合),连结PD并将线段PD绕点P顺时针旋转90º,得线段PE,连结BE,则∠CBE等于( C )  A.75º B.60º     C.45º     D.30º 7.如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC =3,则梯形ABCD的周长是( C ) A.26 B.25    C.21 D.20 8.如图,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边形ABED的周长等于( A ) A. 17 B.18 C.19 D.20 二、填空题: 9.等腰三角形的两边长是3和5,它的周长是 11或13 . 10.在四边形ABCD中,已知AB∥CD,请补充一个条件: 答案不唯一AD∥BC或AB=CD等. ,使得四边形ABCD是平行四边形. 11.如图,将一张等腰直角三角形纸片沿中位线剪开可以 拼成不同形状的四边形,请写出其中一种四边形的名称答案不唯一: 矩形或等腰梯形等 . 12.菱形ABCD中,若对角线长AC=8cm,BD=6cm,则边长AB= 5 cm,面积为 24 cm2. 13.如图,矩形ABCD沿着AE折叠,使D点落在BC边上的F点处,如果∠BAF=60°,则∠DAE等于 15° . 14.已知梯形的中位线长是4cm,下底长是5cm,则它的上底长是  3  cm. 15.如图,已知RtABC中,∠ACB=90°,以斜边AB为边向外作正方形ABDE,且正方形的对角线交于点O,连接OC.已知AC=5,OC=6,则另一直角边BC的长为 7 . N O A B D C M 第13题 第16题 第15题 16.如图,O为矩形ABCD的中心,将直角三角板的直角顶点与O点重合,转动三角板使两直角边始终与BC、AB相交,交点分别为M、N.如果AB=8,AD=12,OM=x,ON=y则y与x的关系是 y=1.5x . 三、解答题 1.证明:等腰三角形底边的中点到两腰的距离相等.(请画出图形,写出已知、求证,完成证明) 已知:_____________________________________ 求证:_____________________________________ 证明: 2.如图,点G、E、F分别在平行四边形ABCD的边AD、DC和BC上,DG=DC,CE=CF, 点P是射线GC上一点,连接FP,EP. 求证:FP=EP. 考点: 平行四边形的性质;全等三角形的判定与性质.1311335 专题: 证明题. 分析: 根据平行四边形的性质推出∠DGC=∠GCB,根据等腰三角形性质求出∠DGC=∠DCG,推出∠DCG=∠GCB,根据等角的补角相等求出∠DCP=∠FCP,根据SAS证出△PCF≌△PCE即可. 解答: 证明:∵四边形ABCD是平行四边形, ∴AD∥BC, ∴∠DGC=∠GCB, ∵DG=DC, ∴∠DGC=∠DCG, ∴∠DCG=∠GCB, ∵∠DCG+∠DCP=180°,∠GCB+∠FCP=180°, ∴∠DCP=∠FCP, ∵在△PCF和△PCE中 , ∴△PCF≌△PCE(SAS), ∴PF=PE. 点评: 本题考查了平行四边形性质,等腰三角形的性质,全等三角形的性质和判定,等角的补角相等,主要考查学生的推理能力,题目比较好,综合性比较强. 3.如图,在等腰梯形ABCD中,AD∥BC,点E、F、G分别在边AB、BC、CD上,且AE=GF=GC.求证:四边形AEFG为平行四边形. 考点: 等腰梯形的性质;平行四边形的判定.1311335 专题: 证明题. 分析: 由等腰梯形的性质可得出∠B=∠C,再根据等边对等角的性质得到∠C=∠GFC,所以∠B=∠GFC,故可得出AB∥GF,再由AE=GF即可得出结论. 解答: 证明:∵梯形ABCD是等腰梯形,AD∥BC, ∴∠B=∠C, ∵GF=GC, ∴∠GFC=∠C, ∴∠GFC=∠B, ∴AB∥GF, 又∵AE=GF, ∴四边形AEFG是平行四边形. 点评: 本题考查的是等腰梯形的性质及平行四边形的判定定理,根据题意得出AB∥GF是解答此题的关键. 4.如图,△ABC中,∠B=90°,AB=6cm,BC=8cm.将△ABC沿射线BC方向平10cm, 得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形. 考点: 菱形的判定;勾股定理;平移的性质.1311335 专题: 证明题. 分析: 根据平移的性质可得CF=AD=10cm,DF=AC,再在Rt△ABC中利用勾股定理求出AC的长为10,就可以根据四条边都相等的四边形是菱形得到结论. 解答: 证明:由平移变换的性质得: CF=AD=10cm,DF=AC, ∵∠B=90°,AB=6cm,BC=8cm, ∴AC===10, ∴AC=DF=AD=CF=10,∴四边形ACFD是菱形. 5.如图,在正方形ABCD中,对角线AC、BD相交于点O,E、F分别在OD、OC上,且DE=CF,连接DF、AE,AE的延长线交DF于点M. 求证:(1)△ADE≌△DCF; (2)AM⊥DF. 考点: 正方形的性质;全等三角形的判定与性质.1311335 专题: 证明题. 分析: 根据DE=CF,可得出OE=OF,继而证明△AOE≌△DOF,得出∠OAE=∠ODF,然后利用等角代换可得出∠DME=90°,即得出了结论. 解答: 证明:∵ABCD是正方形, ∴OD=OC, 又∵DE=CF, ∴OD﹣DE=OC﹣CF,即OF=OE, 在RT△AOE和RT△DOF中,, ∴△AOE≌△DOF, ∴∠OAE=∠ODF, ∵∠OAE+∠AEO=90°,∠AEO=∠DEM, ∴∠ODF+∠DEM=90°, 即可得AM⊥DF. 点评: 此题考查了正方形的性质、全等三角形的判定与性质,解答本题的关键是通过全等的证明得出∠OAE=∠ODF,利用等角代换解题. 6.如图,在梯形ABCD中,AD∥BC,E为BC的中点,BC=2AD,EA=ED=2,AC与ED相交于点F. (1)求证:梯形ABCD是等腰梯形; (2)当AB与AC具有什么位置关系时,四边形AECD是菱形?请说明理由,并求出此时菱形AECD的面积. 考点: 等腰梯形的判定;全等三角形的判定与性质;菱形的判定与性质.1311335 分析: (1)由AD∥BC,由平行线的性质,可证得∠DEC=∠EDA,∠BEA=∠EAD,又由EA=ED,由等腰三角形的性质,可得∠EAD=∠EDA,则可得∠DEC=∠AEB,继而证得△DEC≌△AEB,即可得梯形ABCD是等腰梯形; (2)由AD∥BC,BE=EC=AD,可得四边形ABED和四边形AECD均为平行四边形,又由AB⊥AC,AE=BE=EC,易证得四边形AECD是菱形;过A作AG⊥BE于点G,易得△ABE是等边三角形,即可求得答案AG的长,继而求得菱形AECD的面积. 解答: (1)证明:∵AD∥BC, ∴∠DEC=∠EDA,∠BEA=∠EAD, 又∵EA=ED, ∴∠EAD=∠EDA, ∴∠DEC=∠AEB, 又∵EB=EC, ∴△DEC≌△AEB, ∴AB=CD, ∴梯形ABCD是等腰梯形. (2)当AB⊥AC时,四边形AECD是菱形. 证明:∵AD∥BC,BE=EC=AD, ∴四边形ABED和四边形AECD均为平行四边形. ∴AB=ED, ∵AB⊥AC, ∴AE=BE=EC, ∴四边形AECD是菱形. 过A作AG⊥BE于点G, ∵AE=BE=AB=2, ∴△ABE是等边三角形, ∴∠AEB=60°, ∴AG=, ∴S菱形AECD=EC•AG=2×=2 点评: 此题考查了等腰梯形的判定、平行四边形的判定与性质、等腰三角形的性质以及菱形的判定与性质.此题综合性较强,难度适中,注意数形结合思想的应用. A B D C E F 7.如图,在△ABC中,A、B两点关于直线DE对称,A、C两点关于直线DF对称,DE交AB于点E,交BC于点D,DF交AC于点F. (1)求证:BD=CD; (2)试判断四边形AEDF的形状,并说明理由. 8.如图,点O是线段AB上的一点,OA=OC,OD平分∠AOC交AC于点D,OF平分∠COB,CF⊥OF于点F. (1)求证:四边形CDOF是矩形; (2)当∠AOC多少度时,四边形CDOF是正方形?并说明理由. 考点: 正方形的判定;矩形的判定.1311335 分析: (1)利用角平分线的性质、平角的定义可以求得∠DOF=90°;由等腰三角形的“三合一”的性质可推知OD⊥AC,即∠CDO=90°;根据已知条件“CF⊥OF”知∠CFO=90°;则三个角都是直角的四边形是矩形; (2)当∠AOC=90°时,四边形CDOF是正方形;因为直角△AOC的斜边上的中线OD等于斜边的一半,所以矩形的邻边OD=CD,所以矩形CDOF是正方形. 解答: (1)证明:∵OD平分∠AOC,OF平分∠COB(已知), ∴∠AOC=2∠COD,∠COB=2∠COF, ∵∠AOC+∠BOC=180°, ∴2∠COD+2∠COF=180°, ∴∠COD+∠COF=90°, ∴∠DOF=90°; ∵OA=OC,OD平分∠AOC(已知), ∴OD⊥AC,AD=DC(等腰三角形的“三合一”的性质), ∴∠CDO=90°, ∵CF⊥OF, ∴∠CFO=90° ∴四边形CDOF是矩形; (2)当∠AOC=90°时,四边形CDOF是正方形; 理由如下:∵∠AOC=90°,AD=DC, ∴OD=DC; 又由(1)知四边形CDOF是矩形,则 四边形CDOF是正方形; 因此,当∠AOC=90°时,四边形CDOF是正方形. 点评: 本题考查了矩形的判定与性质、正方形的判定.判别一个四边形为正方形主要根据正方形的概念,方法有两种: ①先说明它是矩形,再说明有一组邻边相等; ②先说明它是菱形,再说明它有一个角为直角. 9.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN. (1)求证:四边形AMDN是平行四边形; (2)①当AM的值为   时,四边形AMDN是矩形,说明理由; ②当AM的值为   时,四边形AMDN是菱形,不必说明理由. 考点: 菱形的判定与性质;平行四边形的判定;矩形的判定.1311335 分析: (1)利用菱形的性质和已知条件可证明四边形AMDN的对边平行且相等即可; (2)①有(1)可知四边形AMD是平行四边形,利用有一个角为直角的平行四边形为矩形即∠DMA=90°,所以AM=AD=1时即可; ②当平行四边形AMND的邻边AM=DM时,四边形为菱形,利用已知条件再证明三角形AMD是等边三角形即可. 解答: (1)证明:∵四边形ABCD是菱形, ∴ND∥AM, ∴∠NDE=∠MAE,∠DNE=∠AME, 又∵点E是AD边的中点, ∴DE=AE, ∴△NDE≌△MAE, ∴ND=MA, ∴四边形AMDN是平行四边形; (2)解:①当AM的值为1时,四边形AMDN是矩形.理由如下: ∵AM=1=AD, ∴∠ADM=30° ∵∠DAM=60°, ∴∠AMD=90°, ∴平行四边形AMDN是矩形; 故答案为:1; ②当AM的值为2时,四边形AMDN是菱形.理由如下: ∵AM=2, ∴AM=AD=2, ∴△AMD是等边三角形, ∴AM=DM, ∴平行四边形AMDN是菱形, 故答案为:2. 点评: 本题考查了菱形的性质、平行四边形的判定和性质、矩形的判定、以及等边三角形的判定和性质,解题的关键是掌握特殊图形的判定以及重要的性质. 10.已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合).以AD为边作正方形ADEF,连接CF. (1)如图1,当点D在线段BC上时,求证:①BD⊥CF.②CF=BC﹣CD. (2)如图2,当点D在线段BC的延长线上时,其它条件不变,请直接写出CF、BC、CD三条线段之间的关系; (3)如图3,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其它条件不变:①请直接写出CF、BC、CD三条线段之间的关系.②若连接正方形对角线AE、DF,交点为O,连接OC,探究△AOC的形状,并说明理由. 考点: 正方形的性质;全等三角形的判定与性质;等腰三角形的判定.1311335 专题: 证明题. 分析: (1)①根据等腰直角三角形的性质可得∠ABC=∠ACB=45°,再根据正方形的性质可得AD=AF,∠DAF=90°,然后利用同角的余角相等求出∠BAD=∠CAF,然后利用“边角边”证明△BAD和△CAF全等,根据全等三角形对应角相等可得∠ACF=∠ABD,再求出∠ACF+∠ACB=90°,从而得证;②根据全等三角形对应边相等可得BD=CF,从而求出CF=BC﹣CD; (2)与(1)同理可得BD=CF,然后结合图形可得CF=BC+CD; (3)①与(1)同理可得BD=CF,然后结合图形可得CF=CD﹣BC;②根据等腰直角三角形的性质求出∠ABC=∠ACB=45°,再根据邻补角的定义求出∠ABD=135°,再根据同角的余角相等求出∠BAD=∠CAF,然后利用“边角边”证明△BAD和△CAF全等,根据全等三角形对应角相等可得∠ACF=∠ABD,再求出∠FCD=90°,然后根据直角三角形斜边上的中线等于斜边的一半求出OC=DF,再根据正方形的对角线相等求出OC=OA,从而得到△AOC是等腰三角形. 解答: (1)证明:①∵∠BAC=90°,AB=AC, ∴∠ABC=∠ACB=45°, ∵四边形ADEF是正方形, ∴AD=AF,∠DAF=90°, ∵∠BAC=∠BAD+∠DAC=90°, ∠DAF=∠CAF+∠DAC=90°, ∴∠BAD=∠CAF, 在△BAD和△CAF中,, ∴△BAD≌△CAF(SAS), ∴∠ACF=∠ABD=45°, ∴∠ACF+∠ACB=90°, ∴BD⊥CF; ②由①△BAD≌△CAF可得BD=CF, ∵BD=BC﹣CD, ∴CF=BC﹣CD; (2)与(1)同理可得BD=CF, 所以,CF=BC+CD; (3)①与(1)同理可得,BD=CF, 所以,CF=CD﹣BC; ②∵∠BAC=90°,AB=AC, ∴∠ABC=∠ACB=45°, 则∠ABD=180°﹣45°=135°, ∵四边形ADEF是正方形, ∴AD=AF,∠DAF=90°, ∵∠BAC=∠BAD+∠DAC=90°, ∠DAF=∠CAF+∠DAC=90°, ∴∠BAD=∠CAF, 在△BAD和△CAF中,, ∴△BAD≌△CAF(SAS), ∴∠ACF=∠ABD=180°﹣45°=135°, ∴∠FCD=∠ACF﹣∠ACB=90°, 则△FCD为直角三角形, ∵正方形ADEF中,O为DF中点, ∴OC=DF, ∵在正方形ADEF中,OA=AE,AE=DF, ∴OC=OA, ∴△AOC是等腰三角形. 点评: 本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的性质,等腰三角形的判定,以及同角的余角相等的性质,此类题目通常都是用同一种思路求解,在(1)中找出证明三角形全等的思路是解题的关键. 11.如图①所示,已知A、B为直线l上两点,点C为直线l上方一动点,连接AC、BC,分别以AC、BC为边向△ABC外作正方形CADF和正方形CBEG,过点D作DD1⊥l于点D1,过点E作EE1⊥l于点E1. (1)如图②,当点E恰好在直线l上时(此时E1与E重合),试说明DD1=AB; (2)在图①中,当D、E两点都在直线l的上方时,试探求三条线段DD1、EE1、AB之间的数量关系,并说明理由; (3)如图③,当点E在直线l的下方时,请直接写出三条线段DD1、EE1、AB之间的数量关系.(不需要证明) 考点: 正方形的性质;全等三角形的判定与性质.1311335 专题: 几何综合题. 分析: (1)由四边形CADF、CBEG是正方形,可得AD=CA,∠DAC=∠ABC=90°,又由同角的余角相等,求得∠ADD1=∠CAB,然后利用AAS证得△ADD1≌△CAB,根据全等三角形的对应边相等,即可得DD1=AB; (2)首先过点C作CH⊥AB于H,由DD1⊥AB,可得∠DD1A=∠CHA=90°,由四边形CADF是正方形,可得AD=CA,又由同角的余角相等,求得∠ADD1=∠CAH,然后利用AAS证得△ADD1≌△CAH,根据全等三角形的对应边相等,即可得DD1=AH,同理EE1=BH,则可得AB=DD1+EE1. (3)证明方法同(2),易得AB=DD1﹣EE1. 解答: (1)证明:∵四边形CADF、CBEG是正方形, ∴AD=CA,∠DAC=∠ABC=90°, ∴∠DAD1+∠CAB=90°, ∵DD1⊥AB, ∴∠DD1A=∠ABC=90°, ∴∠DAD1+∠ADD1=90°, ∴∠ADD1=∠CAB, 在△ADD1和△CAB中, , ∴△ADD1≌△CAB(AAS), ∴DD1=AB; (2)解:AB=DD1+EE1. 证明:过点C作CH⊥AB于H, ∵DD1⊥AB, ∴∠DD1A=∠CHA=90°, ∴∠DAD1+∠ADD1=90°, ∵四边形CADF是正方形, ∴AD=CA,∠DAC=90°, ∴∠DAD1+∠CAH=90°, ∴∠ADD1=∠CAH, 在△ADD1和△CAH中, , ∴△ADD1≌△CAH(AAS), ∴DD1=AH; 同理:EE1=BH, ∴AB=AH+BH=DD1+EE1; (3)解:AB=DD1﹣EE1. 证明:过点C作CH⊥AB于H, ∵DD1⊥AB, ∴∠DD1A=∠CHA=90°, ∴∠DAD1+∠ADD1=90°, ∵四边形CADF是正方形, ∴AD=CA,∠DAC=90°, ∴∠DAD1+∠CAH=90°, ∴∠ADD1=∠CAH, 在△ADD1和△CAH中, , ∴△ADD1≌△CAH(AAS), ∴DD1=AH; 同理:EE1=BH, ∴AB=AH﹣BH=DD1﹣EE1. 12.(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF; (2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD. (3)运用(1)(2)解答中所积累的经验和知识,完成下题: 如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积. 考点: 正方形的性质;全等三角形的判定与性质;勾股定理;直角梯形.1311335 专题: 几何综合题. 分析: (1)由四边形是ABCD正方形,易证得△CBE≌△CDF(SAS),即可得CE=CF; (2)首先延长AD至F,使DF=BE,连接CF,由(1)知△CBE≌△CDF,易证得∠ECF=∠BCD=90°,又由∠GCE=45°,可得∠GCF=∠GCE=45°,即可证得△ECG≌△FCG,继而可得GE=BE+GD; (3)首先过C作CG⊥AD,交AD延长线于G,易证得四边形ABCG为正方形,由(1)(2)可知,ED=BE+DG,即可求得DG的长,设AB=x,在Rt△AED中,由勾股定理DE2=AD2+AE2,可得方程,解方程即可求得AB的长,继而求得直角梯形ABCD的面积. 解答: (1)证明:∵四边形是ABCD正方形, ∴BC=CD,∠B=∠CDF=90°, ∵BE=DF, ∴△CBE≌△CDF(SAS). ∴CE=CF. …(2分) (2)证明:如图2,延长AD至F,使DF=BE,连接CF. 由(1)知△CBE≌△CDF, ∴∠BCE=∠DCF. ∴∠BCE+∠ECD=∠DCF+∠ECD, 即∠ECF=∠BCD=90°, 又∠GCE=45°, ∴∠GCF=∠GCE=45°. ∵CE=CF,GC=GC, ∴△ECG≌△FCG.…(5分) ∴GE=GF, ∴GE=GF=DF+GD=BE+GD. …(6分) (3)解:如图3,过C作CG⊥AD,交AD延长线于G. 在直角梯形ABCD中, ∵AD∥BC, ∴∠A=∠B=90°, 又∵∠CGA=90°,AB=BC, ∴四边形ABCG为正方形. ∴AG=BC.…(7分) ∵∠DCE=45°, 根据(1)(2)可知,ED=BE+DG.…(8分) ∴10=4+DG, 即DG=6. 设AB=x,则AE=x﹣4,AD=x﹣6, 在Rt△AED中, ∵DE2=AD2+AE2,即102=(x﹣6)2+(x﹣4)2. 解这个方程,得:x=12或x=﹣2(舍去).…(9分) ∴AB=12. ∴S梯形ABCD=(AD+BC)•AB=×(6+12)×12=108. 即梯形ABCD的面积为108.…(10分) 点评: 此题考查了正方形的性质与判定、全等三角形的判定与性质、直角梯形的性质以及勾股定理等知识.此题综合性较强,难度较大,注意掌握辅助线的作法是解此题的关键,注意数形结合思想与方程思想的应用.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服