收藏 分销(赏)

粗粒化模拟研究核糖体30S小亚基的组装动力学.pdf

上传人:自信****多点 文档编号:909266 上传时间:2024-04-07 格式:PDF 页数:9 大小:40.25MB
下载 相关 举报
粗粒化模拟研究核糖体30S小亚基的组装动力学.pdf_第1页
第1页 / 共9页
粗粒化模拟研究核糖体30S小亚基的组装动力学.pdf_第2页
第2页 / 共9页
粗粒化模拟研究核糖体30S小亚基的组装动力学.pdf_第3页
第3页 / 共9页
亲,该文档总共9页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Dynamics in the assembly of the 30S ribosomal subunitinvestigated by coarse-grained simulationsXinLiu1,andZhiyongZhang1,21School of Data Science,University of Science and Technology of China,Hefei 230027,China;2Department of Physics,University of Science and Technology of China,Hefei 230026,ChinaCor

2、respondence:ZhiyongZhang,E-mail:2023TheAuthor(s).ThisisanopenaccessarticleundertheCCBY-NC-ND4.0license(http:/creativecommons.org/licenses/by-nc-nd/4.0/).Cite This:JUSTC,2023,53(9):0906(8pp)ReadOnlineAbstract:Theribosomeisalargebiomolecularcomplexresponsibleforproteinsynthesis.InEscherichia coli(E.co

3、li),acompleteribosomeiscomposedofa30Ssmallsubunitanda50Slargesubunit.Forapproximatelyhalfacentury,the30Ssubunithasbeenakeymodelsystemforstudyingtheinvitroassemblyoftheribosome,andanassemblymaphasbeenproposed.However,structuraldetailsintheassemblyofthisproteinRNAcomplexremainelusive.Inthispaper,wecon

4、-ductedaseriesofcoarse-grainedsimulationsfollowingtheorderoftheassemblymaptoinvestigateconformationaldy-namicsduringtheassemblyprocessofthe30Ssubunit.Ithasbeenfoundthatthetertiarystructureofnaked16SrRNAisveryunstable,whichisthecaseafterbindingofearly-assemblyproteins.Themid-assemblyproteinscansignif

5、icantlyre-strictthemobilityofthe16SrRNAandmakethelatterclosetothenativestructure.Thefinalbindingofthelate-assemblyproteinswouldfullyobtainthecollectivemotionofthe16SrRNA.Inparticular,proteinsS9andS3mayhavemoreim-portantcontributionstotheassemblyofthe30SsubunitthanotherSproteins.Ourstrategyofcoarse-g

6、rainedsimulationscanbegenerallyusedtostudyassemblydynamicsoflargebiomolecularcomplexesaslongastheassemblymapisavailable.Keywords:biomolecularcomplexes;assembly;ribosome;30Ssubunit;coarse-grainedsimulation;principalcomponentanalysisCLC number:Q617Document code:A1 IntroductionTheribosomeisalargebiomol

7、ecularcomplexthatincludesproteinsandRNAsandisresponsibleforcatalyzingproteinsynthesis1.Acompleteribosomecontainsalargesubunitanda small subunit.In prokaryotes and archaea,the 50S largesubunitiscomposedofa23SrRNA,a5SrRNA,and33pro-teins,whereasthe30Ssmallsubunitconsistsofa16SrRNAand21proteins2.Theevol

8、utionofalargebiomolecularcomplexcanbeseenasalongperiodofassembly,sotheassemblycanreflectthepathwayofcomplexevolution3.Theassemblyprocessofacomplexisdynamic4,whichisrelatedtotheorderinwhichthesameordifferentcomponentscometogether3,5,6.Theas-semblyof the ribosome in vivo requires hundreds of as-sembly

9、factorstoworktogetherundercertainconditions,butthe assembly in vitro can be done without any assemblyfactors7,whichhasbeenstudiedforalongtime.Asearlyasthe1960s,theinvitrospontaneousassemblyabilityofthe30SsubunitintheE.coliribosomewasconfirmedbytheNomuralaboratory8,andsubsequently,theassemblyofthe50S

10、 subunit was confirmed by the Nierhaus laboratory9.Later,the ability of ribosomes from other bacteria to as-semble into catalytically active structures through separatenaturalRNAandproteinswasalsodemonstrated1015.The16SrRNAinthe30Sribosomalsubunithasfourinde-pendentdomains:the5domain,thecentraldomai

11、n,the3majordomain,andthe3minordomain.Eachofthefirstthreemaindomainscanbeindependentlyassembledwiththecorresponding S proteins in vitro1618.Naked 16S rRNA isveryactiveandrequirestheassemblyofSproteinstoformastableordered structure.The 30S subunit can be reconstit-utedinvitrowith16SrRNAasastartingpoin

12、tbyaddingthenecessary S proteins to exhibit their relevant biochemicalcharacteristics19.Under reconstitution conditions,severalmethodsofaddingproteinstothe16SrRNAusingcombinedbindingallowtheSproteinstobedividedintothreeclassestoformanassemblymap20.Primarybindingproteinsbinddir-ectlyandindependentlyt

13、othe16SrRNA,whichisthoughttoinitiatethefoldingofeachofthethreemaindomains.Sec-ondarybindingproteinsrequireatleastoneprimarybindingproteinbeforebindingtothe16SrRNA,andtertiarybindingproteinsrequireatleastoneproteinfromthefirsttwostagestobeassembled.Throughinvitroassemblykineticexperi-ments,akineticas

14、semblymapwasformed,andtheSpro-teins were divided into early-,mid-,mid-late-and late-assemblyproteins.Thekineticassemblydatareflectvariousaspects of domain assembly and binding trends,indicatingthattheassemblyrangesfromthe5domaintothe3domain,whichisconsistentwiththecotranscriptionalassembly21.Article

15、http:/Received:April 18,2023;Accepted:June 08,202309061DOI:10.52396/JUSTC-2023-0064JUSTC,2023,53(9):0906Inrecentyears,variousexperimentaltechniqueshavebeenusedtostudytheassemblyofthe30Ssubunit.Electrosprayionizationmassspectrometry(MS),alongwiththelatestcryo-EM techniques,can visualize intermediates

16、 at near-atomicresolutionthroughoutthepathwayofsubunitconstructionandisthereforewidelyusedtostudytheassemblypathwayofcomplexes5.Whilesuchdatahaveproventobeaveryusefulstartingpoint,theydonotprovidedetailedinformationaboutdynamicsintheassemblyprocess.Thatis,onlythestructurecanbeobtained,andthereisnote

17、noughinformationonhowthecomplexformstheexistingstructure.Molecular dynamics(MD)simulations have long beenusedin studying the dynamic processes of large bio-molecules.They are generally atomic based on classicalmechanics as kinetic principles,and molecular mechanicalforce fields are constantly improv

18、ing22.However,all-atomMDisveryexpensiveinsimulatinglargebiomolecularcom-plexessuchastheribosome,anditwouldbedifficulttode-scribethecompleteandlongtime-scalekineticprocess23.Inrecentyears,coarse-grained(CG)modelshavebeenusedtorevealthephysicalmechanismofaseriesofprotein/nucleicacidmolecules2428becaus

19、etheircomputationalefficiencyissignificantlyhigher than that of all-atom MD.CG simula-tionshavebeencontinuouslyoptimizingandcalibratingrel-evantforcefieldsandmethodsduetotheirabilitytodisplayprocessessuchastheassemblyoflargebiomolecularcom-plexesonalongtimescale29.TherearemanyCGmodelsavailable,sucha

20、sthestructure-basedmodel30,themultiscalecoarse-grained(MS-CG)method31,theMARTINImodel32,33,andtheSAFTmodel34.Therefore,inthiswork,basedonthekineticassemblymap,westudystructuraldynamicsintheassemblyprocessofthe30SsubunitthroughCGsimulations.Thesimulationdataarecomparedwiththeexistingexperimentaldatao

21、finvitroas-sembly,whichcanrevealtheroleofthespecificSproteinsintheassemblyprocess.2 Materials and methods2.1 Simulated systemsThe 30S ribosomal subunit of E.coli is composed of 16SrRNAand21ribosomalproteins(Sproteins,namedS1S21indecreasingorderofmolecularweight).Anatomicmodelofthe30Ssubunitwastakenf

22、romRef.35,inwhichthe16SrRNAcontains1536nucleotidesand20Sproteins(S2S21)areavailable(Fig.1).Thethreemaindomains(5,central,and3major)ofthe16SrRNAmakeupthebody,platform,andhead,respectively.TheassemblyoftheSproteinsisdi-videdintofourstagesaccordingtothekineticmap(Table1).Theearly-assemblyproteinsinclud

23、eS4,S6,S11,S15,S16,S17,S18,andS20(Fig.1,magenta),themid-assemblypro-teinsincludeS7,S8,S9,S13,andS19(Fig.1,orange),themid-late-assemblyproteinsincludeS5andS12(Fig.1,blue),andthelate-assemblyproteinsincludeS2,S3,S10,S14,andS21(Fig.1,red).WebuiltthefollowingsystemstorunCGsimulations.(i)Thenaked16SrRNAi

24、sthestartingstateoftheassembly.(ii)The 30S subunit is the end state of the assembly.(iii)Betweenthestartingandendstates,weaddedtheSproteinsonebyone,followingtheordershowninTable1.2.2 The CG modelsIn the off-lattice G model of a protein,each amino acidFig.1.Structureofthe30Sribosomalsubunit.(a)Thefro

25、ntside(theinterfacewiththe50Ssubunit)and(b)theback.The16SrRNAiscoloredblack,andtheSproteinsarecoloreddifferentlyaccordingtothekineticassemblymap(Table1).Thebody,platform,head,andbeakarelabeled.Dynamicsintheassemblyofthe30Sribosomalsubunitinvestigatedbycoarse-grainedsimulationsLiuetal.09062DOI:10.523

26、96/JUSTC-2023-0064JUSTC,2023,53(9):0906residueisrepresentedbyaCGparticle,mostoftenattheposi-tionofitsCatom.Thepotentialenergyfunctionis:V(R|R0)=ikb(ri,i+1ri,i+1,0)2+ik(ii,0)2+ik11cos(ii,0)+k31cos3(ii,0)+nativeij3go5(rij,0rij)126(rij,0rij)10+non-nativeij3ev(drij)12.(1)Thefirstthreetermsrepresentpoten

27、tialsforvirtualbondlengths,bondangles,anddihedralangles,respectively.Thefourthtermisthenativecontactpotentialbetweennonlocalresiduepairs,wherethesummationisrestrictedtothosepairsinthe reference structure.The last term represents an ex-cludedvolumeeffectthatisapenaltyfornonnativecontacts.In this work

28、,a G-like protein model called AICG2+36wasused:VAICG2+(R|R0)=Vbond+Vflploc+Vnatloc+Vnatnloc+Vexv.(2)VbondVflplocVnatlocVnatnlocgoVexvisthefirsttermofEq.(1).isagenericflexiblelocalpotentialforthevirtualbondanglesanddihedralangles.isthestructure-basedlocalpotential.isthestructure-basednonlocalcontactp

29、otential,whichissimilartothefourthtermofEq.(1)exceptthatthesearenotuniformbutde-termined from atomic interactions between specific residuepairs.isthelasttermofEq.(1).Additionally,electrostat-icforceswerecomputedusingtheDebyeHckelequationwithacutoffof20andionstrengthof0.15mol/L.Thedielectric constant

30、 was set as 78.0 F/m.The off-lattice Gmodel37anditsderivativesrepresentquasiharmonicfluctu-ationsnearnativestructureswhileachievingaperfectfunnelenergylandscape.Inthe16SrRNA,eachnucleotideisrepresentedbythreeCGparticles,whicharephosphate(P),sugar(S),andbase(B).Thismodelisarationaltreatmentforthechem

31、icaldistri-butionofnucleotides.Thepotentialisdescribedbythefol-lowingterms:thelocalpotential,thenonlocalcontactinterac-tion,theexcludedvolumeterm,andtheelectrostaticinterac-tion.Since the 16S rRNA is largely double-stranded,aPAIR_RNA potential needs to be included to maintain thestabilityofbasepairs

32、.Thisinteractionhasasimilarformasthegeneralcontactinteractionbutusesdifferentcoefficientsdiscriminatedbythenumberofbase-paringhydrogenbonds.Forinteractionsbetweenthe16SrRNAandtheSproteins,wealsousedtheGmodelwiththeadditionofrepulsionandelectrostaticinteractions.2.3 CG simulationsAlltheCGsimulationsw

33、ereconductedbyCafeMolversion3.2.130usingLangevindynamics,withatimestepof0.3inCafeMol time units.Each CG simulation was run for 108steps,and the temperature was set to 300 K.The overalltranslationandrotationoftheentiremoleculewereallowed.go_unitisanoverallscalingfactorofthepairwiseinterac-tionstrengt

34、h.Foreachnativecontact(intramoleculeorinter-molecule),thedefaultvalueofgo_unitis1.0.Weneedtode-termineapropervalueofgo_unittoobservesignificantcon-formationaldynamicsofthe30Ssubunitwhilepreservingitstertiarystructure.Therefore,CGsimulationsofthe30Ssub-unitwereconductedbytryingdifferentvaluesofgo_uni

35、t,andthreeindependentsimulationswererunforeachgo_unit.Ithasbeenfoundthatago_unitof0.8isappropriate.Wethenfixed the go_unit as 0.8 for both intra-and intermolecularcontactsinthefollowingCGsimulations.2.4 Principal component analysisij=(riri)(rjrj)Principalcomponentanalysis(PCA)onasimulationtraject-or

36、yofalargebiomoleculeisusedtoextractlarge-scalecol-lectivemotionofthebiomoleculefromitssmallandrandominternalmotion38.Thismethodcomprisesthefollowingsteps.(i)Allconformationsinthetrajectoryarefittedtoareferencestructuretoeliminatetheoveralltranslationandrotationofthebiomolecule.(ii)Acovariancematrixo

37、fpositionalfluctu-ationisconstructed,whereriandrjrepresentCartesiancoordinatesoftheparticlesselectedforPCA,andmeansthecoordinateaverage.(iii)Thecovari-ance matrix is diagonalized to obtain eigenvectors(PCAmodes)andcorrespondingeigenvalues.ThePCAmodeswiththelargesteigenvaluesgenerallydescribethecolle

38、ctivemo-tionofthebiomolecule39.Foreachsystem,1000conforma-tionswerecontainedintheCGtrajectory,andthePparticleswereusedtoconstructthecovariancematrix.ToclearlyseethemotionalongcertainPCAmodes,onecan project the conformations in the trajectory onto thesemodes individually.The root mean square inner pr

39、oduct(RMSIP)betweentwosetsofPCAmodescanmeasuretheirdynamicsimilarity40:Table 1.KineticassemblymapoftheSproteinsinthe30Sribosomalsubunit.GroupProteinI(early)S4S6S11S15S16S17S18S20II(mid)S7S8S9S13S19II(mid-late)S5S12III(late)S2S3S10S14S21Liuetal.09063DOI:10.52396/JUSTC-2023-0064JUSTC,2023,53(9):0906RM

40、SIP=1nni=1nj=1(vAivBj)212,(3)whereviandvjrepresenttheithandjthPCAmodesobtainedfromtwodifferentsetsofPCAmodes(AandB),andnisthenumberofPCAmodesusedtocomputeRMSIP.SincethePCAmodesarenormalized,anRMSIPof1meansthatthetwosetsofPCAmodesareidentical,andanRMSIPof0in-dicatesthattheyareorthogonal.3 Results and

41、 discussion3.1 Structural dynamics in the four-stage assembly ofthe 30S subunitTomeasureconformationalchangesofthe16SrRNAintheCGsimulations,therootmeansquareddeviations(RMSD)ofallthePparticleswerecalculatedusingthenativestructureofthe16SrRNAinthe30Ssubunitasthereference.IntheCGsimulationofthenaked16

42、SrRNA,thesystemisveryun-stable,withanRMSDgreaterthan30.0(Fig.2,black).Thetertiarystructureofthe16SrRNAisunfolded.Boththeplat-formandtheheadareexpanded,andthejunctionbetweentheheadandthebodyisextremelymobile(Fig.3a).Theresultsindicatethat,withouttheSproteins,the16SrRNAitselfcan-notmaintainitsnativest

43、ructure.Wenowwanttoinvestigatehowtheoverallstabilityofthe16S rRNA changes after the S proteins at each stage areadded sequentially.When only the early-assembly proteinsareassembledtothe16SrRNA(denotedas16S+I),theter-tiarystructureisstillnotstable,withRMSDvaluesessen-tially between 2030 (Fig.2,magent

44、a).These early-as-semblyproteinsbindtothe5andcentraldomains(Fig.3b,magenta),which make up the body and platform,respect-ively.Therefore,the body is stabilized,and the platformmovesclosetothebodyattheearlystagecomparedtothena-ked 16S rRNA(Fig.3a).However,no early-assembly pro-teinisassembledtothe3maj

45、ordomainthatmakesupthehead,sotheheadisnearlyasmobileasthatinthenaked16SrRNA.ThismayexplainwhytheRMSDvaluesofthe16S+Isystem are still large.After the mid-assembly proteins are assembled(denotedas16S+I-II),thestabilityofthesystemisgreatlyin-creased.TheRMSDvaluesfluctuatebyapproximately10.0(Fig.2,orang

46、e).Accordingtothepositionsofthefivemid-assemblyproteinsonthe16SrRNA(Fig.3c,orange),fourofthemarelocatedontheheadthatjoinsthetwohalvesofthe3majordomaintogether;therefore,themobilityoftheheadis significantly decreased.Only one mid-assembly protein(S8)islocatedatthebackofthebody.Thetwomid-lateas-sembly

47、proteinsareclosetothecentraljunctionbetweenthebodyandthehead(Fig.3d,blue).Oncetheyareassembled(denoted as 16S+I-II-II),the stability is increased slightly(Fig.2,blue)compared to the 16S+I-II system(Fig.2,or-ange).The16S+I-II-IIsystemisalsocalledthe21Sreconsti-tutionintermediate20,whichlacksmostofthe

48、head-bodycon-tacts,andthebeakregionintheheadisflexible.Thelate-assembly proteins would make additional connectionsbetweentheheadandthebodyandrestrictthemotionofthebeak(Fig.3e,red).Therefore,in the final 30S subunit,the 16SrRNAiswellfoldedwithanaverageRMSDof3.7(Fig.2,red).TheassemblyorderoftheSprotei

49、nsisbasicallyfrom5to3ofthe16SrRNA41,whichdoesnotmeanthattheearly-assemblyproteinscontributemosttothestabilityofthesys-tem.Ithasbeenfoundthatmid-andlate-assemblyproteinsplaythemostimportantrolesintheassemblyprocessduetotheirlocationson16SrRNA.WeconductedPCAontheCGtrajectoryofthe30Ssub-unit,andonlyPpa

50、rticleswereusedtoconstructthecovari-ancematrix.Conformationsinthetrajectorywerethenpro-jected onto a 2D subspace defined by the first two PCAmodes(denotedasPC1andPC2).Thesampledregionofthe30Ssubunitiscenteredatapproximately(0,0)(Fig.4a,red).ForeachPCAmode,wetookconformationswiththemostnegativeandthe

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 论文指导/设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服