资源描述
高考一轮专练——抽象函数
1. 已知函数y = f (x)(x∈R,x≠0)对任意的非零实数,,恒有f()=f()+f(),试判断f(x)的奇偶性。
2 已知定义在[-2,2]上的偶函数,f (x)在区间[0,2]上单调递减,若f (1-m)<f (m),求实数m的取值范围
3. 设f(x)是R上的奇函数,且f(x+3) =-f(x),求f(1998)的值。
4. 设函数对任意,都有, 已知,求,的值.
5. 已知f(x)是定义在R上的函数,且满足:f(x+2)[1-f(x)]=1+f(x),f(1)=1997,求f(2001)的值。
6. 设f(x)是定义R在上的函数,对任意x,y∈R,有 f(x+y)+f(x-y)=2f(x)f(y)且f(0)≠0.
(1)求证f(0)=1;(2)求证:y=f(x)为偶函数.
7. 已知定义在R上的偶函数y=f(x)的一个递增区间为(2,6),试判断(4,8)是y=f(2-x)的递增区间还是递减区间?
8. 设f(x)是定义在R上的奇函数,且对任意a,b,当a+b≠0,都有>0
(1)若a>b,试比较f(a)与f(b)的大小;
(2)若f(k<0对x∈[-1,1]恒成立,求实数k的取值范围。
9.已知函数是定义在(-∞,3]上的减函数,已知对恒成立,求实数的取值范围。
10.已知函数当时,恒有.
(1)求证: 是奇函数;(2)若.
11.已知是定义在R上的不恒为零的函数,且对于任意的,都满足: .
(1)求的值;(2)判断的奇偶性,并证明你的结论;
(3)若,,求数列{}的前项和.
12.已知定义域为R的函数满足.
(1)若
(2)设有且仅有一个实数,使得,求函数的解析表达式.
13.已知函数的定义域为R,对任意实数都有,且,当时, >0.
(1)求;(2)求和;
(3)判断函数的单调性,并证明.
14.函数的定义域为R,并满足以下条件:①对任意,有>0;②对任意,有;③.
(1)求的值;(2)求证: 在R上是单调减函数;
(3)若且,求证:.
15.已知函数的定义域为R,对任意实数都有,且当时,.
(1)证明:;(2)证明: 在R上单调递减;
(3)设A=,B={},若=,试确定的取值范围.
16.已知函数是定义在R上的增函数,设F.
(1)用函数单调性的定义证明:是R上的增函数;
(2)证明:函数=的图象关于点(成中心对称图形.
17.已知函数是定义域为R的奇函数,且它的图象关于直线对称.
(1)求的值;(2)证明: 函数是周期函数;
(3)若求当时,函数的解析式,并画出满足条件的函数至少一个周期的图象。
18.函数对于x>0有意义,且满足条件减函数。
(1)证明:;(2)若成立,求x的取值范围。
19.设函数在上满足,,且在闭区间[0,7]上,只有.
(1)试判断函数的奇偶性;
(2)试求方程=0在闭区间[-2005,2005]上的根的个数,并证明你的结论.
20. 已知函数f(x)对任意实数x,y,均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)=-2,求f(x)在区间[-2,1]上的值域。
21. 已知函数f(x)对任意,满足条件f(x)+f(y)=2 + f(x+y),且当x>0时,f(x)>2,f(3)=5,求不等式的解。
22. 是否存在函数f(x),使下列三个条件:①f(x)>0,x ∈N;②;③f(2)=4。同时成立?若存在,求出f(x)的解析式,如不存在,说明理由。
答案:
1. 解:令= -1,=x,得f (-x)= f (-1)+ f (x) ……①为了求f (-1)的值,令=1,=-1,则f(-1)=f(1)+f(-1),即f(1)=0,再令==-1得f(1)=f(-1)+f(-1)=2f(-1) ∴f(-1)=0代入①式得
f(-x)=f(x),可得f(x)是一个偶函数。
2. 分析:根据函数的定义域,-m,m∈[-2,2],但是1- m和m分别在[-2,0]和[0,2]的哪个区间内呢?如果就此讨论,将十分复杂,如果注意到偶函数,则f (x)有性质f(-x)= f (x)=f ( |x| ),就可避免一场大规模讨论。
解:∵f (x)是偶函数, f (1-m)<f(m) 可得,∴f(x)在[0,2]上是单调递减的,于是 ,即 化简得-1≤m<。
3. 解:因为f(x+3) =-f(x),所以f(x+6)=f((x+3)+3) =-f(x+3)=f(x),故6是函数f(x)的一个周期。又f(x)是奇函数,且在x=0处有定义,所以f(x)=0从而f(1998)=f(6×333)=f(0)=0。
4. 解:由f(=f(,知 f(x)=f(≥0,x
, f(1)=2,
同理可得
5.解:从自变量值2001和1进行比较及根据已知条件来看,易联想到函数f(x)是周期函数。由条件得f(x)≠1,故
f(x+2)=f(x+4)=. 所以f(x+8)=.
所以f(x)是以8为周期的周期函数,
从而f(2001)=f(1)=1997
说明:这类问题出现应紧扣已知条件,需用数值或变量来迭代变换,经过有限次迭代可直接求出结果,或者在迭代过程中发现函数具有周期性,利用周期性使问题巧妙获解。
6.证明:(1)问题为求函数值,只需令x=y=0即可得。
(2)问题中令x=0即得f(y)+f(- y)=2f(0)f(y),
且f(0)=1.所以f(y)+f(-y)=2f(y),因此y=f(x)为偶函数.
说明:这类问题应抓住f(x)与f(-x)的关系,通过已知条件中等式进行变量赋值。
7. 解:由y=f(x)是偶函数且在(2,6)上递增可知,y=f(x)在(-6,-2)上递减。令u=2-x,则当x∈(4,8)时,u是减函数且u∈(-6,-2),而f(u)在(-6,-2)上递减,故y=f(2-x)在(4,8)上递增。所以(4,8)是y=f(2-x)的单调递增区间。
8. 解:(1).因为a>b,所以a-b>0,由题意得
>0,所以f(a)+f(-b)>0,又f(x)是定义在R上的奇函数,所以f(-b)=-f(b), f(a)-f(b)>0,即f(a)>f(b)
(2).由(1)知f(x)在R上是单调递增函数,又f+f<0,得f<f,故<,所以k<
令t=,所以k<t+,而t+≥2,即k<2-1
9.解:等价于
10.(1)证明:令,得
令,则
∴ ∴是奇函数。
(2)∵
又∵
11.(1)解:令,则
令,则
(2)证明:令,则,∵,∴
令,则
∴是奇函数。
(3)当时,,令,则
故,所以
∴
∵
∴,故
∴
12.解:(1)∵对任意,函数满足,且
∴
∵,∴=f(a)=a
(2) ∵对任意,函数满足,有且仅有一个实数,使得
∴对任意,有
上式中,令,则
∵,故
若,则,则,但方程有两个不相同的实根与题设茅盾,故
若,则,则,此时方程有两个相等的实根,即有且仅有一个实数,使得
∴
13.(1)解:令,则
(2)∵
∴
∴数列是以为首项,1为公差的等差数列,故
==
(3)任取,则
=
∴
∴函数是R上的单调增函数.
14.(1)解: ∵对任意,有>0, ∴令得,
(2)任取任取,则令,故
∵函数的定义域为R,并满足以下条件:①对任意,有>0;②对任意,有;③
∴
∴
∴函数是R上的单调减函数.
(3) 由(1)(2)知,,∴
∵
∴,而
∴
∴
15. (1)证明:令,则
∵当时,,故,∴,∵当时,
∴当时,,则
(2)证明: 任取,则
∵,∴0<,故<0,又∵
∴,故
∴函数是R上的单调减函数.
(3) ∵
由(2)知,是R上的减函数,∴
∵B={}=
又∵,
∴方程组无解,即直线的内部无公共点
∴,故的取值范围是-
16.(1)任取,则
F=[
∵, ∴∴
又∵函数是定义在R上的增函数, ∴,
故
∴>0
∴是R上的增函数;
(2)设为函数=的图象上任一点,则点关于点(的对称点为N(),则
,故
∵把代入F得, =-
∴函数=的图象关于点(成中心对称图形.
17.(1)解:∵为R上的奇函数, ∴对任意都有,令则
∴=0
(2)证明: ∵为R上的奇函数, ∴对任意都有,
∵的图象关于直线对称, ∴对任意都有,
∴ 用代得,
∴,即
∴是周期函数,4是其周期.
(3)当时,
当时,,
当时,,
∴
图象如下:
y
-2 -1 0 1 2 3 4 5 6 x
18.(1)证明:令,则,故
(2)∵,令,则, ∴
∴
∴成立的x的取值范围是。
19.解:(1)由f(2-x)=f(2+x),f(7-x)=f(7+x)得函数的对称轴为,
从而知函数不是奇函数,
由
,从而知函数的周期为
又,故函数是非奇非偶函数;
(2)由
又
故f(x)在[0,10]和[-10,0]上均有有两个解,从而可知函数在[0,2005]上有402个解,在[-2005.0]上有400个解,所以函数在[-2005,2005]上有802个解.
20. 解:设,∵当,∴,
∵,
∴,即,∴f(x)为增函数。
在条件中,令y=-x,则,再令x=y=0,则f(0)=2 f(0),∴ f(0)=0,故f(-x)=f(x),f(x)为奇函数,
∴ f(1)=-f(-1)=2,又f(-2)=2 f(-1)=-4,
∴ f(x)的值域为[-4,2]。
21. 解:设,∵当,∴,则,
即,∴f(x)为单调增函数。 ∵, 又∵f(3)=5,∴f(1)=3。∴,∴, 即,解得不等式的解为-1 < a < 3。
22. 分析:由题设可猜想存在,又由f(2)=4可得a=2.故猜测存在函数,用数学归纳法证明如下:
(1)x=1时,∵,又∵x ∈N时,f(x)>0,∴,结论正确。
(2)假设时有,则x=k+1时,,∴x=k+1时,结论正确。
综上所述,x为一切自然数时。
展开阅读全文