1、函数的极值与导数教案湖北省团风县实验中学 易浮明教学目标1.理解函数的极大值、极小值、极值点的意义;2.掌握函数极值的判别方法.进一步体验导数的作用.教学重点 求函数的极值教学难点 严格套用求极值的步骤教学过程一、前置检测函数的极值与导数的关系1、观察下图中的曲线a点的函数值f(a)比它临近点的函数值都大b点的函数值f(b)比它临近点的函数值都小2、观察函数 f(x)2x36x27的图象,思考:函数yf(x)在点x0,x2处的函数值,与它们附近所有各点处的函数值,比较有什么特点?(1)函数在x0的函数值比它附近所有各点的函数值都大,我们说 f(0) 是函数的一个极大值;(2)函数在x2的函数值
2、比它附近所有各点的函数值都小,则f(2)是函数的一个极小值函数y2x36x27 的一个极大值: f (0); 一个极小值: f (2)函数y2x36x27 的 一个极大值点: ( 0, f (0) );一个极小值点: ( 2,f (2) )二、精讲点拨1.极值的概念:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x) f(x0)我们就说f(x0)是函数f(x)的一个极大值,记作y极大值f(x0);如果对x0附近的所有的点,都有f(x)f(x0),我们就说f(x0)是函数f(x)的一个极小值,记作y极小值f(x0)极大值与极小值统称为极值2.观察下图中的曲线考察下图
3、中,曲线在极值点处附近切线的斜率情况上图中,曲线在极值点处切线的斜率为0,极大值点左侧导数为正,右侧为负;极小值点左侧导数为负,右侧为正函数的极值点xi是区间a, b内部的点,区间的端点不能成为极值点函数的极大(小)值可能不止一个,并且函数的极大值不一定大于极小值,极小值不一定小于极大值函数在a, b上有极值,其极值点的分布是有规律的,像相邻两个极大值间必有一个极小值点3.利用导数判别函数的极大(小)值:一般地,当函数f(x)在点x0处连续时,判别f(x0)是极大(小)值的方法是:如果在x0附近的左侧f (x)0,右侧f (x)0,那么,f(x0)是极大值;如果在x0附近的左侧f (x)0,右
4、侧f (x)0,那么,f(x0)是极小值;思考:导数为0的点是否一定是极值点?导数为0的点不一定是极值点如函数f(x)x3,x0点处的导数是0,但它不是极值点例1求函数解:yx24(x2)(x2)令 y0,解得 x12,x22当x变化时,y,y的变化情况如下表因此,当x2时, y极大值 ,当x2时,y极小值求可导函数f (x)的极值的步骤: 求导函数f (x); 求方程 f (x)0的根; 检查f (x)在方程根左右的值的符号,如果左正右负,那么f (x)在这个根处取得极大值;如果左负右正,那么f (x)在这个根处取得极小值例2求函数的极值三、当堂测评例3 求函数y(x21)31的极值解:定义域为R,y6x(x21)2.由y0可得x11,x20,x31当x变化时,y,y的变化情况如下表: 当x0时,y有极小值,并且y极小值0例4的极值思考: 导数值为0的点一定为极值点吗?极值点一定导数值为0吗?练习:求函数的极值四、总结提升1考察函数的单调性的方法;2导数与单调性的关系;3用导数求单调区间的步骤.五、布置作业1.课时作业二十2.预习函数的最大(小)值与导数,理解最值与极值的区别,会求某些简单函数的最大值和最小值4