1、辽宁省瓦房店市第八初级中学八年级数学上册运用公式法(一)教案 人教新课标版教学目标(一)知识认知要求1.使学生了解运用公式法分解因式的意义;2.使学生掌握用平方差公式分解因式.3.使学生了解,提公因式法是分解因式的首先考虑的方法,再考虑用平方差公式分解因式.(二)能力训练要求1.通过对平方差公式特点的辨析,培养学生的观察能力.2.训练学生对平方差公式的运用能力.(三)情感与价值观要求在引导学生逆用乘法公式的过程中,培养学生逆向思维的意识,同时让学生了解换元的思想方法.教学重点让学生掌握运用平方差公式分解因式.教学难点将单项式化为平方形式,再用平方差公式分解因式;培养学生多步骤分解因式的能力.教
2、学过程一、创设问题情境,引入新课在前两节课中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式.如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本节课我们就来学习另外的一种因式分解的方法公式法.二、新课讲解1.请看乘法公式(a+b)(ab)=a2b2 (1)左边是整式乘法,右边是一个多项式,把这个等式反过来就是a2b2=(a+b)(
3、ab) (2)左边是一个多项式,右边是整式的乘积.大家判断一下,第二个式子从左边到右边是否是因式分解?符合因式分解的定义,因此是因式分解.对,是利用平方差公式进行的因式分解.第(1)个等式可以看作是整式乘法中的平方差公式,第(2)个等式可以看作是因式分解中的平方差公式.2.公式讲解请大家观察式子a2b2,找出它的特点.是一个二项式,每项都可以化成整式的平方,整体来看是两个整式的平方差.如果一个二项式,它能够化成两个整式的平方差,就可以用平方差公式分解因式,分解成两个整式的和与差的积.如x216=(x)242=(x+4)(x4).9 m 24n2=(3 m )2(2n)2=(3 m +2n)(3
4、 m 2n)3.例题讲解例1把下列各式分解因式:(1)2516x2; (2)9a2b2.解:(1)2516x2=52(4x)2=(5+4x)(54x);(2)9a2b2=(3a)2(b)2=(3a+b)(3ab).例2把下列各式分解因式:(1)9(m+n)2(mn)2;(2)2x38x.解:(1)9(m +n)2(mn)2=3(m +n)2(mn)2=3(m +n)+(mn)3(m +n)(mn)=(3 m +3n+ mn)(3 m +3nm +n)=(4 m +2n)(2 m +4n)=4(2 m +n)(m +2n)(2)2x38x=2x(x24)=2x(x+2)(x2) 说明:例1是把一
5、个多项式的两项都化成两个单项式的平方,利用平方差公式分解因式;例2的(1)是把一个二项式化成两个多项式的平方差,然后用平方差公式分解因式,例2的(2)是先提公因式,然后再用平方差公式分解因式,由此可知,当一个题中既要用提公因式法,又要用公式法分解因式时,首先要考虑提公因式法,再考虑公式法.补充例题:判断下列分解因式是否正确.(1)(a+b)2c2=a2+2ab+b2c2.(2)a41=(a2)21=(a2+1)(a21).解:(1)不正确.本题错在对分解因式的概念不清,左边是多项式的形式,右边应是整式乘积的形式,但(1)中还是多项式的形式,因此,最终结果是未对所给多项式进行因式分解.(2)不正
6、确.错误原因是因式分解不到底,因为a21还能继续分解成(a+1)(a1).应为a41=(a2+1)(a21)=(a2+1)(a+1)(a1).三、课堂练习(一)随堂练习1.判断正误(1)x2+y2=(x+y)(xy);(2)x2y2=(x+y)(xy);(3)x2+y2=(x+y)(xy);(4)x2y2=(x+y)(xy).2.把下列各式分解因式解:(1)a2b2m2(2)(ma)2(n+b)2(3)x2(a+bc)2(4)16x4+81y4(二)补充练习:把下列各式分解因式(1)36(x+y)249(xy)2;(2)(x1)+b2(1x);(3)(x2+x+1)21.四.课时小结我们已学习
7、过的因式分解方法有提公因式法和运用平方差公式法.如果多项式各项含有公因式,则第一步是提公因式,然后看是否符合平方差公式的结构特点,若符合则继续进行.第一步分解因式以后,所含的多项式还可以继续分解,则需要进一步分解因式,直到每个多项式都不能分解为止.五.课后作业 习题2.4六.活动与探究把(a+b+c)(bc+ca+ab)abc分解因式解:(a+b+c)(bc+ca+ab)abc=a+(b+c)bc+a(b+c)abc=abc+a2(b+c)+bc(b+c)+a(b+c)2abc=a2(b+c)+bc(b+c)+a(b+c)2=(b+c)a2+bc+a(b+c)=(b+c)a2+bc+ab+ac=(b+c)a(a+b)+c(a+b)=(b+c)(a+b)(a+c)