资源描述
《1.3 线段的垂直平分钱》
线段的垂直平分钱(一)
教学目标:
知识与技能目标:
1.经历探索、猜测过程,能够运用公理和所学过的定理证明线段垂直平分线的性质定理和判定定理.
2.能够利用尺规作已知线段的垂直平分线.
过程与方法目标:
1.经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力.
2.体验解决问题策略的多样性,发展实践能力和创新精神。
3.学会与人合作,并能与他人交流思维的过程和结果.
情感态度与价值观目标:
1.能积极参与数学学习活动,对数学有好奇心和求知欲.
2.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.
重点、难点、关键:
1.重点:理解和掌握线段垂直平分线定理,并能正确运用。
2.难点:运用综合证明的方法,命题的逆命题的书写。
3.关键:把握住“探索——发现——猜想——证明”的主线,注意从已知条件的推理中,以及求证问题的变换中寻找突破口.对于道命题的写法重要的是,分析原命题的条件、结论,再写出其逆命题。
教学过程:
定理:线段垂直平分线上的点到这条线段两个端点的距离相等。
提问:尝试写出证明过程。
想一想
你能写出上面这个定理的逆命题吗?它是真命题吗?
定理:到一条线段两个端点的距离相等的点,在这条线段的垂直平分线上。
操作幻灯机,展示证明过程
随堂练习:
随堂练习1.
课堂小结:
本节课通过探索、思考证明线段的垂直平分线定理的思路,加深思维的认知过程。本节课的定理在实际应用中所起着简化证明的作用,同时在制图的方面有着较为实际的应用。对于定理的逆命题,首先要正确理解一个定理的条件和结论,注意区分,并且明确:一个定理不一定有逆定理.在尺规作图既要做出图形又要讲清作图的依据。
作业:
1.课本P26、2、3
线段的垂直平分线(二)
教学目标:
知识与技能目标:
1. 经历探究、发现的过程,提高推理证明能力。
2. 进一步发展学生的推理证明意识和能力。
过程与方法目标:
1.创设思考的时间和空间,体验线段垂直平分线定理的实际应用。
2.能运用所学定理进行尺规作用,并能说明作图依据.
3.能够证明线段垂直平分线的性质定理.
情感态度与价值观目标:
1. 培养学生的逻辑思维能力,动手操作能力,以及参与意识.
2. 培养学生探究精神,参与意识,形成合作交流的课堂氛围。
重点、难点、关键:
1.重点:掌握尺规作图的方法。
2.难点。尺规作图的构思.
3.关键:把握住线段垂直平分线的定理,运用尺规作图的基本方法,首先构思而后再画出规范的图形.这里先进行草图构思是关键。
教学过程:
动手操作:分四人小组,让每位学生剪一个三角形纸片,通过折叠找出每条边的垂直平分线,观察这三条垂直平分线,你发现了什么?当利用尺规作出三角形三条边的垂直平分线时,你是否也发现了同样的结论?与同伴进行交流。
定理;三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
议一议
1.已知三角形的一条边及这条边上的高,你能作出三角形吗?如果能,能作几个?所作出的三角形都全等?
1.的答案是:这样的三角形能作出无数个。它们不都全等。
议一议
2.已知等腰三角形的底边及底边上的高,你能用尺规作出等腰三角形吗?能作几个?
随堂练习:
随堂练习1、2
课堂小结:
本节课主要训练尺规作图,通过绘制图形,让学生体验定理在实际中的运用,感悟其实际价值。学习中要注意构思所要制作的图形的作法,画出草稿,分析方法。不要急于动手。对于三线一点的证明应总结其证明手法。在书写作法中,要注意几何语言的表达,同时注意作图的依据。
作业:
课本习题1.7 1.2
展开阅读全文