1、6.1 因式分解【教学目标】相关以往知识:_教学内容和方法:_个性化教学思路及改进建议:_一、 知识和技能1、理解因式分解的概念和意义2、认识因式分解与整式乘法的相互关系相反变形,并会运用它们之间的相互关系寻求因式分解的方法。二、过程和方法由学生自行探求解题途径,培养学生观察、分析、判断能力和创新能力,发展学生智能,深化学生逆向思维能力和综合运用能力。三、情感、态度和价值观培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。【教学重点】因式分解的概念。【教学难点】理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。【教学过程】一、情境导入看谁
2、算得快:(抢答)(1)若a=101,b=99,则a2-b2=_;(2)若a=99,b=-1,则a2-2ab+b2=_;(3)若x=-3,则20x2+60x=_。二、探究新知1、请每题答得最快的同学谈思路,得出最佳解题方法。(多媒体出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;(2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。2、观察:a2-b2=(a+b)(a-b),a2-2ab+b2 = (a-b)2, 20x2+60x=20x(x+3),找出它们的特
3、点。(等式的左边是一个什么式子,右边又是什么形式?) 3、类比小学学过的因数分解概念,得出因式分解概念。(学生概括,老师补充。)板书课题:6.1 因式分解因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。三、前进一步_ 1、让学生继续观察:(a+b)(a-b)= a2-b2, (a-b)2= a2-2ab+b2, 20x(x+3)= 20x2+60x,它们是什么运算?与因式分解有何关系?它们有何联系与区别?(要注意让学生区分因式分解与整式乘法的区别,防止学生出现在进行因式分解当中,半路又做乘法的错误。)2、因式分解与整式乘法的关系: 因式分解 结合:a2-b2=(a+
4、b)(a-b) 整式乘法说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。结论:因式分解与整式乘法的相互关系相反变形。(多媒体展示学生得出的成果)四、巩固新知1、 下列代数式变形中,哪些是因式分解?哪些不是?为什么?(1)x2-3x+1=x(x-3)+1 ;(2)(mn)(ab)(mn)(xy)(mn)(abxy);(3)2m(m-n)=2m2-2mn;(4)4x2-4x+1=(2x-1)2; (5)3a2+6a=3a(a+2);(6)x2-4+3x=(x-2)(x+2)+3x;(7)k2+2=(k+
5、)2;(8)18a3bc=3a2b6ac。_2、你能写出整式相乘(其中至少一个是多项式)的两个例子,并由此得到相应的两个多项式的因式分解吗?把结果与你的同伴交流。五、应用解释例 检验下列因式分解是否正确:(1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).分析:检验因式分解是否正确,只要看等式右边几个整式相乘的积与右边的多项式是否相等。练习 计算下列各题,并说明你的算法:(请学生板演) (1)872+8713 (2)1012-992六、思维拓展1.若 x2+mx-n能分解成(x-2)(x-5),则m= ,n= 2机动题:(填空)x2-8x+m=(x-4)( ),且m= 七、课堂回顾今天这节课,你学到了哪些知识?有哪些收获与感受?说出来大家分享。【课堂小结交给学生, 让学生总结本节课中概念的发现过程,运用概念分析问题的过程,养成学生学习总结学习的良好习惯。唯有总结反思,才能控制思维操作,才能促进理解,提高认知水平,从而促进数学观点的形成和发展,更好地进行知识建构,实现良性循环。】八、布置作业教科书第153的作业题。瞬间灵感或困惑:_板书设计