1、141.3积的乘方1经历探索积的乘方和运算法则的过程,进一步体会幂的意义2理解积的乘方运算法则,能解决一些实际问题重点积的乘方运算法则及其应用难点幂的运算法则的灵活运用一、问题导入师提出的问题:若已知一个正方体的棱长为1.1103 cm,你能计算出它的体积是多少吗?生它的体积应是V(1.1103)3 cm3.师这个结果是幂的乘方形式吗?生不是,底数是1.1与103的乘积,虽然103是幂,但总体来看,我认为应是积的乘方才有道理师积的乘方如何运算呢?能不能找到一个运算法则?用前两节课的探究经验,请同学们自己探索,发现其中的奥妙二、探索新知老师列出自学提纲,引导学生自主探究、讨论、尝试、归纳(出示投
2、影片)1填空,看看运算过程用到哪些运算律,从运算结果看能发现什么规律?(1)(ab)2(ab)(ab)(aa)(bb)a()b();(2)(ab)3_a()b();(3)(ab)n_a()b()(n是正整数)2把你发现的规律先用文字语言表述,再用符号语言表达3解决前面提到的正方体体积计算问题4积的乘方的运算法则能否进行逆运算呢?请验证你的想法5完成教材第97页例3.学生探究的经过:1(1)(ab)2(ab)(ab)(aa)(bb)a2b2,其中第步是用乘方的意义;第步是用乘法的交换律和结合律;第步是用同底数幂的乘法法则同样的方法可以算出(2),(3)题;(2)(ab)3(ab)(ab)(ab)
3、(aaa)(bbb)a3b3;(3)(ab)n(ab)(ab)(ab)n个abaaan个abbbn个banbn.2积的乘方的结果是把积的每一个因式分别乘方,再把所得的幂相乘,也就是说积的乘方等于幂的乘积用符号语言叙述便是:(ab)nanbn.(n是正整数)3正方体的V(1.1103)3它不是最简形式,根据发现的规律可作如下运算:V(1.1103)31.13(103)31.1310331.131091.331109(cm3)通过上述探究,我们可以发现积的乘方的运算法则:(ab)nanbn.(n为正整数)积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘再考虑如下问题:(abc)n如何计算?
4、是不是也有类似的规律?3个以上的因式呢?学生讨论后得出结论:三个或三个以上因式的积的乘方也具有这一性质,即(abc)nanbncn.(n为正整数)4积的乘方法则可以进行逆运算即anbn(ab)n.(n为正整数)分析这个等式:左边是幂的乘积,而且幂指数相同,右边是积的乘方,且指数与左边指数相等,那么可以总结为:同指数幂相乘,底数相乘,指数不变看来这也是降级运算了,即将幂的乘积转化为底数的乘法运算对于anbn(ab)n(n为正整数)的证明如下:anbn(aaa)n个a(bbb)n个b幂的意义(ab)(ab)(ab)(ab)(ab)n个(ab)乘法交换律、结合律(ab)n乘方的意义5例3(1)(2a
5、)323a38a3;(2)(5b)3(5)3b3125b3;(3)(xy2)2x2(y2)2x2y22x2y4x2y4;(4)(2x3)4(2)4(x3)416x3416x12.(学生活动时,老师深入到学生中,发现问题,及时启发引导,使各个层面的学生都能学有所获)师通过自己的努力,发现了积的乘方的运算法则,并能做简单的应用可以作如下归纳总结:(1)积的乘方法则:积的乘方等于每一个因式乘方的积即(ab)nanbn.(n为正整数)(2)三个或三个以上的因式的积的乘方也是具有这一性质如(abc)nanbncn;(n为正整数)(3)积的乘方法则也可以逆用即anbn(ab)n,anbncn(abc)n.(n为正整数)三、随堂练习1教材第98页练习(由学生板演或口答)四、课堂小结(1)通过本节课的学习,你有什么新的体会和收获?(2)在应用积的运算性质计算时,你觉得应该注意哪些问题?五、布置作业(1)(2xy)3;(2)(5x3y)2;(3)(xy)23;(4)(0.5am3n4)2.本节课属于典型的公式法则课,从实际问题猜想主动推导探究理解公式应用公式公式拓展,整堂课体现以学生为本的思想。实际问题情境的设置,在于让学生感受到研究新问题的必要性,带着问题思考本节课,更容易理解重点、突破难点