1、探索勾股定理教案1、体验勾股定理的探索过程. 2、掌握勾股定理3、学会用勾股定理解决简单的几何问题 教学重点与难点教学重点:本节的重点是勾股定理.教学难点:勾股定理的证明采用了面积法,这是学生从未体验的,是本节教学的难点.教学过程(一)、创设情境,导入新课 向学生展示国际数学大会(ICM-2002)的会标图徽,并简要介绍其设计思路,从而激发学生勾股定理的兴趣。可以首次提出勾股定理。(二)、做一做 通过学生主动合作学习来发现勾股定理。 (1)、让学生尽量准确地作出三个直角三角形,两直角边长分别为3cm和4cm,6cm和8cm,5cm和12cm,并根据测量结果,完成下列表格:abc3468512(
2、三)、议一议1、你能发现直角三角形三边长度之间的关系吗?在图象交流的基础上,老师板书:直角三角形的两直角边的平方和等于斜边的平方。这就是著名的勾股定理。也就是说:如果直角三角形的两直角边为a 和b ,斜边为 c ,那么。我国古代称直角三角形的较短的直角边为勾,较长直角边为股,斜边为弦,这就是勾股定理的由来。2、分别以9cm 和12cm为直角边长作一个直角三角形,并测量斜边长度,请同学们两人一组讨论,三边关系符合勾股定理吗? (四)、想一想 已知直角三角形ABC的两条直角边分别为a,b,斜边长为c,画一个边长为c的正方形,将4个这样的直角三角形纸片按下图放置。教师提出3个问题:abc(1)、中间
3、小正方形的边长和面积分别为多少?(用 a,b 表示) (2)、大正方形的面积可以看成哪几个图形面积相加得到? (3)、据(2)可以写出怎样一个关系式?化简后便验证了勾股定理。可以启发学生其他的验证方法。 (五)用一用 通过例题的讲练使学生体验勾股定理应用的普遍性和广泛性。 例1、已知ABC中,C=90,AB=c, BC=a, AC=b,(1) 如果求c;(2) 如果求b;可以让学生独立完成这个基本训练,但教师应强调解题过程的规范表述。例2、如图,是一个长方形零件,根据所给尺寸(单位:mm),求两孔中心A、B之间的距离。AB160904040 首先,教学过程中应启发学生构造出含所求线段的直角三角
4、形,从而应用勾股定理求解。 其次,应强调,构造新图形的过程及主要的推理过程都应书写完整。(六)、练一练 1、已知ABC中,C=90,AB=c, BC=a, AC=b,(3) 如果求c;(4) 如果求b;(5) 如果求a,b; 2、用刻度尺和圆规作一条线段,使它的长度为cm。 3、利用作直角三角形,在数轴上表示。(七)、小结 1、至少了解一种勾股定理的验证方法; 2、除了掌握勾股定理外,还应初步学会构造直角三角形,以便应用勾股定理。(八)、布置作业 (见作业本2.6)一、 教学反思 本节内容重在探索与发现,要给充分的时间让学生讨论与交流。适当的练习以巩固所学也是必要的,当然,这些内容还需在后面的教学内容再加深加广。