1、19.3 尺规作图(3)教案一、教学目标1.进一步熟练尺规作图.2.掌握尺规的基本作图:画线段的垂直平分线,画直线的垂线.3.尺规作图的简单应用,解尺规作图题,会写已知、求作和作法.二、教学重点 画图,写出作图的主要画法.三、教学难点写出作图的主要画法,应用尺规作图.四、教学方法引导法,演示法,分析法,探索法.五、教学过程(一)引入我们已熟悉尺规的两个基本作图:画线段,画角.那么利用尺规还能解决什么作图问题呢?(二)新课1.画线段的垂直平分线.请同学们探索用直尺和圆规准确地画出一条线段的垂直平分线.已知线段a,用直尺和圆规准确地画出已知线段a的垂直平分线.解决这一问题,要利用好线段垂直平分线的
2、性质.请同学们讨论、探索、交流、归纳出具体的作图方法.例1 已知底边及底边上的高作等腰三角形.分析:要完成这个作图,先作出底边,再作底边的垂直平分线,取高,最后完成三角形.已知:底边a、及底边上的高h.(画出两条线段a、h)求作:ABC,使得一底边为a、底边上的高为h.作法:(略).2.画直线的垂线.请同学们探索用直尺和圆规准确地画出一条直线的垂线.请同学们讨论、探索、交流、归纳出具体的作图方法.实际上,画出一条直线的垂线,就是转化为画线段的垂直平分线.例2 过直线外一点作直线的垂线.已知:直线a、及直线a外一点A.(画出直线a、点A)求作:直线a的垂线直线b,使得直线b经过点A.作法:(1)
3、以点A为圆心,以适当长为半径画弧,交直线a于点C、D.(2)以点C为圆心,以AD长为半径在直线另一侧画弧.(3)以点D为圆心,以AD长为半径在直线另一侧画弧,交前一条弧于点B. (4)经过点A、B作直线AB.直线AB就是所画的垂线b.(如图)3.(优生)探索如何过一点、两点和不在同一直线上的三点作圆.思考:如何解决这一实际问题?下面我们共同探寻解决这一问题的办法.练习教材练习第1、2题.探究1:过一个已知点A如何作圆?(如图,让学生动手去完成)学生讨论并发现:过点A所作圆的圆心在哪儿?半径多大?可以作几个这样的圆?(圆心不定,半径不定,可以作无数个圆)探究1 探究2 探究2:过已知两点A、B如
4、何作圆?(如图,学生动手去完成)学生继续讨论并发现:它们的圆心到A、B两点的距离怎样?能用式子表示吗?圆心在哪里?过点A、B两点的圆有几个?(OA=OB,圆心在直线AB的垂直平分线上,有无数个圆)探究3:过同一平面内三个点的情况会怎样呢?分两种情况研究:(1)求作一个圆,使它经过不在一直线上三点A、B、C.已知:不在一直线上三点A、B、C,求作一个圆,使它同时经过点A、B、C.(学生口述作法,教师示范作图过程)学生讨论并发现:这样一共可作几个圆?圆心在哪里?圆心到A、B、C三点的距离怎样?(可作一个圆,圆心是线段AB、AC、BC的垂直平分线的交点,圆心到A、B、C三点距离相等)(2)过在一直线上的三点A、B、C可以作几个圆?(不能作出)发现结论:不在同一直线上的三点确定一个圆:(三)小结请同学们自己对本课内容进行小结.(四)作业习题3、4题.