1、第六章第二节一次函数教学内容:一次函数教学目标:1、理解一次函数和正比例函数的概念,能根据所给条件写出简单的一次函数表达式。2、经历一般规律的探索过程、发展学生的抽象思维能力。3、经历利用一次函数解决实际问题的过程,发展学生的数学应用能力。教学重点:理解一次函数和正比例函数的概念.教学难点能根据所给条件写出简单的一次函数表达式,发展学生的抽象思维能力.教学过程:一、创设情境,新课导入有关函数问题在我们日常生活中随处可见,如弹簧秤有自然长度,在弹性限度内,随着所挂物体的重量的增加,弹簧的长度相应的会拉长,那么所挂物体的重量与弹簧的长度之间就存在某种关系,究竟是什么样的关系,请看:某弹簧的自然长度
2、为3厘米,在弹性限度内,所挂物体的质量x每增加1千克、弹簧长度y增加0.5厘米。(1)计算所挂物体的质量分别为1千克、2千克、3千克、4千克、5千克时弹簧的长度,并填入下表:x/千克012345y/厘米(2)你能写出x与y之间的关系式吗?2、某辆汽车油箱中原有汽油100升,汽车每行驶50千克耗油9升。(1)完成下表:汽车行驶路程x/千米050100150200300油箱剩余油量y/升(2)你能写出x与y之间的关系吗?目的:从学生比较熟悉的情景(弹簧的长度、汽车油箱中的余油量)出发,便于学生从情境中直接列出相应的代数表达式,在情境中设计了一个填表活动,一方面让学生感受到x的变化引起y的变化情况,
3、另一方面通过对这个变化情况的观察,帮助学生获得关于变化规律的猜想,通过对一般规律的探索过程,从实际问题中抽象出一次函数和正比例函数的概念.二、探究新知,理解概念1、一次函数,正比例函数的概念上面的两个函数关系式为y=0.5x+3,y=100-0.18x,都是左边是因变量y,右边是含自变量x的代数式。并且自变量和因变量的指数都是一次。若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。2、例题讲解例1:下列函数中,y是x的一次函数的是( )y=x-6;y=;y=;y=7-xA、 B、
4、 C、 D、例2:写出下列各题中x与y之间的关系式,并判断,y是否为x的一次函数?是否为正比例函数?汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间x(时)之间的关系式;圆的面积y(厘米2)与它的半径x(厘米)之间的关系;一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度为y(厘米)(1)y=60x,y是x的一次函数,也是x的正比例函数;(2)y=x2,y不是x的正比例函数,也不是x的一次函数;(3)y=50+2x,y是x的一次函数,但不是x的正比例函数。例3:我国现行个人工资薪金税征收办法规定:月收入低于800元但低于1300元的部分征收5%的所得税如某人某月收入11
5、60元,他应缴个人工资薪金所得税为(1160-800)5%=18(元)当月收入大于800元而又小于1300元时,写出应缴所得税y(元)与月收入x(元)之间的关系式。某人某月收入为960元,他应缴所得税多少元?如果某人本月缴所得税19.2元,那么此人本月工资薪金是多少元?分析:(1)当月收入大于800元而小于1300元时,y=0.05(x-800);(2)当x=960时,y=0.05(960-800)=8(元);(3)当x=1300时,y=0.05(1300-800)=25(元),2519.2,因此本月工资少于1300元,设此人本月工资是x元,则0.05(x-800)=19.2,x=1184。目
6、的:通过丰富的现实背景的例题,进一步理解一次函数和正比例函数的概念,根据所给的条件写出简单的一次函数的表达式,让学生体会数学的广泛应用,发展学生的抽象思维能力.充分加强数学与现实的联系,促进学生新的认知结构的建立和数学应用能力的发展.三、课堂练习,巩固提高1根据下表写出之间的一个关系式.2、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按0.6元/米3收费;每户每月用水量超过6米3时,超过部分按1元/米3收费。设每户每月用水量为x米3,应缴水费y元。(1)写出每月用水量不超过6米3和超过6米3时,y与x之间的函数关系式,并判断它们是否为一次函数。(2)已知某户5月份的用水量为8米3,求该用户5月份的水费。目的:对本节知识进行巩固练习,进一步加强对一次函数和正比例函数概念的理解四、课堂小结:1、一次函数、正比例函数的概念及关系。2、能根据已知简单信息,写出一次函数的表达式。五、布置作业:P 186习题6.2知识技能1和问题解决2