1、福建省泉州市泉港三川中学九年级数学上册24.3 相似三角形的应用教案 华东师大版教学目标会应用相似三角形的有关性质,测量简单的物体的高度或宽度。教学过程一、复习 1、相似三角形有哪些性质? 2如图,B、C、E、F是在同一直线上,ABBF,DEBF,ACDF, (1) DEF与ABC相似吗?为什么? (2)若DE1,EF2,BC10,那么AB等于多少? 二、例题讲解 第二题我们根据两个三角形相似,对应边成比例,列出比例式计算出AB的长。人们从很早开始,就懂得应用这种方法来计算那些不能直接测量的物体的高度或宽度。例1:古代的数学家想出了一种测量金字塔高度的方法:为了测量金字塔的高度OB,先竖一根已
2、知长度的木棒OB,比较棒子的影长AB与金字塔的影长AB,即可近似算出金字塔的高度OB,如果OBl,AB2,AB274,求金字塔的高度OB。 这实际上与上述问题是一样的。例2我军一小分队到达某河岸,为了测量河宽,只用简单的工具,就可以很快计算河的宽度,在河对岸选定一个目标作为点A,再在河的这一岸上选点B和C,使ABBC,然后选点E,使ECBC,用眼睛测视确定BC和AE的交点D,此时如果测得BD120米,DC60米,EC50米,就能算出两岸间的大致距离AB。例2:如图24313,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A,再在河的这一边选定点B和C,使ABBC,然后,再选点E,使ECB
3、C,用视线确定BC和AE的交点D此时如果测得BD120米,DC60米,EC50米,求两岸间的大致距离AB解ADBEDC,ABCECD90,ABDECD (如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似),解得(米)答:两岸间的大致距离为100米 这些例题向我们提供了一些利用相似三角形进行测量的方法例3:如图24314,已知:D、E是ABC的边AB、AC上的点,且ADEC求证:ADABAEAC证明ADEC,AA,ADEACB(如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似), ADABAEAC三、练习 1到操场上用例1的方法测量旗杆的高,并与同伙交流看看计算结果是否大致上一样。2在同一时刻物体的高度与它的影长成正比,在某一时刻,有人测得高为1.8米的竹竿的影长为3米,此时某高楼影长为60米,那么高楼的高度为多少米?四、小结本节课学习应用相似三角形的性质,测量计算物体的高度,在应用时要分清转到数学上是哪两个三角形会相似,它们对应的边是哪一边,利用比例的性质求证答案。