资源描述
1.4.1 有理数的乘法(第二课时)
一、课标要求:
知识目标:有理数乘法运算
能力目标:能确定几个不是0的有理数乘积运算的符号,进行有理数运算;运用乘法的分配律进行有理数的乘法计算;
二、课标理解:
情感态度和价值观:体会用计算器给有理数运算带来的方便.
三、内容安排:
重点:有理数乘法运算
有理数的乘法运算
你还记得有理数的乘法法则吗?(同号得正,异号得负,并把绝对值相乘)
难点:有理数乘法运算
四、教学过程
[知识讲解]
活动一:
从有理数的乘法法则可以看出,有理数的乘法关键是符号的确定,那么三个以上的有理数相乘积的符号怎么确定呢?下面我们就来研究这个问题.
确定下列积的符号,你能从中发现什么?
① ②
③ ④
学生归纳结论:
结论1:有一个因数为0,则积为0;
结论2:几个不等于0的数相乘,积的符号由负因数的个数决定:当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正.
巩固练习:判断下列积的符号(口答)
① ②
③ ④
活动二:
例3 计算:
几个数相乘,如果其中有因数0,积等于0
五、学习评价
一、选择
1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( )
A.一定为正 B.一定为负 C.为零 D. 可能为正,也可能为负
2.若干个不等于0的有理数相乘,积的符号( )
A.由因数的个数决定 B.由正因数的个数决定
C.由负因数的个数决定 D.由负因数和正因数个数的差为决定
3.下列运算结果为负值的是( )
A.(-7)×(-6) B.(-6)+(-4); C.0×(-2)(-3) D.(-7)-(-15)
4.下列运算错误的是( )
A.(-2)×(-3)=6 B.
C.(-5)×(-2)×(-4)=-40 D.(-3)×(-2)×(-4)=-24
二、计算 1、(-7.6)×0.5; 2、 .
3、 ; 4、;.
5、 ;
6、 .
展开阅读全文