资源描述
9.2 实际问题与一元一次不等式(二)
教学目标
1、会根据实际问题中的数量关系建立数学模型,学会用去分母的方法解一元一次不等式;
2、通过去分母的方法解一元一次不等式,让学生了解数学中的化归思想,感知不等式与方程的内在联系;
3、结合实际,创设活泼有趣的情境,提高学生的学习兴趣.让他们在活动中获得成功的体验,激发起求知的欲望,增强学习的自信心.
教学重点:
列不等式解决问题中如何建立不等式关系,并根据不等关系列出不等式。
教学难点:
在实际问题中如何建立不等关系,并根据不等关系列出不等式。
教学过程(师生活动)
复习巩固解下列不等式:
①5x+54<x-1 ②2(1一3x)>3x+20 ③2(一3+x)<3(x+2)④(x+5)<3(x-5)-6
先让学生板演、练习,然后师生共同点评、订正,指出解题中应注意的地方,复习一元一次不等式的解法.
提出问题2002年北京空气质量良好(二级以上)的天数与全年天数之比达到55%.若到2008年这样的比值要超过70%,那么,2008年北京空气质量良好(二级以上)的天数至少要增加多少天?
解决问题:1、2002年北京空气质量良好的天数是多少?
2、用x表示2008年增加的空气质量良好的天数,则2008年北京空气质量良好的天数是多少?
3、2008年共有多少天?与x有关的哪个式子的值应超过70%?这个式子表示什么?
4、怎样解不等式在学生讨论后,教师做解题过程示范.
5、比较解这个不等式与解方程的步骤,两者有什么不同吗?
在学生充分讨论的基础上,师生共同归纳得出:
解一元一次不等式与解一元一次方程类似,只是不等式两边同乘以(或除以)一个数时,要注意不等号的方向.解一元一次方程,要根据等式的性质,将方程逐步化为x-a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为x>a或x<a)的形式.
1、 巩固新知解下列不等式,并在数轴上表示解集:
(1)(2)
2、.当x或y满足什么条件时,下列关系成立?
(1)2(x+1)大于或等于1; (2)4x与7的和不小于6;
(3)y与1的差不大于2y与3的差; (4)3y与7的和的小于-2.
总结归纳:师生共同归纳解一元一次不等式的一般步骤,并与解一元一次方程再次进行比较。
布置作业:教科书第134页习题9.2第1题(3)~(6)、第3题(3)、(4)。
展开阅读全文